Self Studies

Mathematics Test - 9

Result Self Studies

Mathematics Test - 9
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    3 / -1

    Find the angle between two vectors \((\vec{a}=2 \hat{i}+\hat{j}-3 \hat{k})\) and \((\vec{b}=3 \hat{i}-2 \hat{j}-\hat{k})\).

    Solution

    \(\overrightarrow{a}=2 \hat{i}+\hat{j}-3 \hat{k}\) and \(\overrightarrow{b}=3 \hat{i}-2 \hat{j}-\hat{k}\)

    \(\vec{a} \cdot \vec{b}=(2 \hat{i}+\hat{j}-3 \hat{k})(3 \hat{i}-2 \hat{j}-\hat{k}) \)

    \(=6-2+3=7 \ldots .(1) \)

    \(|\vec{a}|=\sqrt{2^{2}+1^{2}+(-3)^{2}}=\sqrt{14} \ldots(2) \)

    \(|\vec{b}|=\sqrt{3^{2}+(-2)^{2}+(-1)^{2}}=\sqrt{14} \ldots .(3) \)

    \(\cos \theta=\frac{\vec{a} \cdot \vec{b}}{|\vec{a}| \cdot|\vec{b}|}\)

    Put the values from (1), (2) and (3) in above equation:

    \(=\frac{7}{\sqrt{14}. \sqrt{14}}=\frac{1}{2} \)

    \(\cos \theta=\cos 60^{\circ} , \theta=60^{\circ}\)

  • Question 2
    3 / -1

    Maximise,

    \(Z=x+y\), subject to \(x-y \leq-1,-x+y \leq 0\), and \(x, y \leq 0\)

    Solution

    Maximize:

    \(\mathrm{Z}=(\mathrm{x}+\mathrm{y})\)

    \(\Rightarrow \mathrm{x}-\mathrm{y} \leq-1, \mathrm{y}-\mathrm{x} \leq 0, \mathrm{x}, \mathrm{y} \leq 0\)

    Put \(\mathrm{x}=0\) in \(\mathrm{x}-\mathrm{y}=-1\)

    \(\mathrm{y}=1\)

    Put \(\mathrm{x}=1\) in equation (i)

    \(\mathrm{y}=2 \)

    Put \(\mathrm{x}=-1 \)

    \(-1-\mathrm{y}=-1 \)

    \(\mathrm{y}=0 \)

    \(\mathrm{y}-\mathrm{x}=0 \)

    Put \(\mathrm{x}=0 \text { in equation (ii) } \)

    \(\mathrm{y}=0 \)

    Put \(\mathrm{x}=1 \)

    \(\mathrm{y}=1 \)

    Put \(\mathrm{x}=2 \)

    \(\mathrm{y}=2 \)

    Put \(\mathrm{x}=-1 \)

    \(\mathrm{y}=-1\)

    No feasible region, hence, no maximum value.

  • Question 3
    3 / -1

    Find the value of \(\frac{(\sin x+\cos x+1)(\sin x+\cos x-1)}{(\tan x+\cot x)\left(\sin ^{2} x \cos ^{2} x\right)}\):

    Solution

    Given:

    \(\frac{(\sin x+\cos x+1)\left(\sin x+\cos {x}-1\right)}{(\tan x+\cot x)\left(\sin ^{2} x \cos ^{2} x\right)}\)

    \(=\frac{(\sin x+\cos x)^{2}-1}{\left(\frac{\sin x}{\cos x}+\frac{\cos x}{\sin x}\right)\left(\sin ^{2} x \cos ^{2} x\right)}\)

    \(=\frac{\sin ^{2} x+\cos ^{2} x+2 \sin x \cos x-1}{\frac{\sin ^{2} x+\cos x}{\sin x \cdot \\cos ^{2} x} \times \sin ^{2} x \cos ^{2} x}\)

    \(=\frac{2 \sin x \cos x}{\sin x \cos x}\)

    \(=2\)

  • Question 4
    3 / -1

    The equation of sphere is \(x^2+y^2+z^2-x+z-2=0\), its radius is:

    Solution

    The general equation of sphere is given as:

    \(x^2+y^2+z^2+2 u x+2 v y+2 w z+d=0\)........(1)

    centre at \((- u ,- v ,- w )\) and

    radius \(r=\sqrt{u^2+v^2+w^2-d}\)..........(2)

    Given:

    \(x^2+y^2+z^2-x+z-2=0\)

    Compare given equation with equation (1)

    \( x^2+y^2+z^2+2 u x+2 v y+2 w z+d=0 \)

    \( u=-0.5, v=0, w=0.5, d=-2\)

    Radius can be calculated from equation (2)

    \(=\sqrt{\left(-\frac{1}{2}\right)^2+0^2+\left(\frac{1}{2}\right)^2+2}\)

    \( =\sqrt{\frac{5}{2}}\)

  • Question 5
    3 / -1

    If \(\sin ^{4} x+2 \cos ^{4} x=\frac{2}{3}\), then what is the value of \(\sec ^{2} x ?\)

    Solution

    Given,

    \(\sin ^{4} x+2 \cos ^{4} x=\frac{2}{3}\)

    \(\Rightarrow \sin ^{4} x+\cos ^{4} x+\cos ^{4} x=\frac{2}{3}\)

    \(\Rightarrow 1-2 \sin ^{2} x \cos ^{2} x+\cos ^{4} x=\frac{2}{3}\)

    \(\Rightarrow 1-2\left(1-\cos ^{2} x\right) \cos ^{2} x+\cos ^{4} x=\frac{2}{3}\)

    \(\Rightarrow 1-2 \cos ^{2} x+2 \cos ^{4} x+\cos ^{4} x=\frac{2}{3}\)

    \(\Rightarrow 9 \cos ^{4} x-6 \cos ^{2} x+1=0\)

    \(\Rightarrow\left(3 \cos ^{2} x-1\right)^{2}=0\)

    \(\Rightarrow \cos ^{2} x=\frac{1}{3}\)

    \(\sec ^{2} x=3\)

    \(\therefore\) The value of \(\sec ^{2} x\) is \(3\).

  • Question 6
    3 / -1

    The curve represented by the equations

    \(x=3(\cos t+\sin t)\)

    \(y=4(\cos t-\sin t)\) is:

    Solution

    Equation of an ellipse is:

    \(\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1\)

    Given, \(x=3(\cos t+\sin t) \)

    \(y=4(\cos t-\sin t) \)

    \(\left(\frac{x}{3}\right)^{2}=1+\sin 2 t \ldots(1)\)

    \(\left(\frac{y}{4}\right)^{2}=1-\sin 2 t \ldots(2)\)

    Adding equation (1) and (2), we get

    \(\frac{x^{2}}{9}+\frac{y^{2}}{16}=2\)

    Thus, the given curve represents an ellipse.

  • Question 7
    3 / -1

    What is the number of outcomes when a coin is tossed and then a die is rolled only in case a head is shown on the coin?

    Solution

    When, a coin is tossed

    Outcome \(=\mathrm{S}=\{\mathrm{H}, \mathrm{T}\}\)

    When a die is rolled,

    \(S=\{1,2,3,4,5,6\}\)

    Now, a coin is tossed and a die is rolled, and we need only head on the coin

    \(\text { So, } \mathrm{S}=\{(\mathrm{H}, 1),(\mathrm{H}, 2),(\mathrm{H}, 3),(\mathrm{H}, 4),(\mathrm{H}, 5),(\mathrm{H}, 6)\} \)

    \(\mathrm{n}(\mathrm{S})=6\)

  • Question 8
    3 / -1

    For any positive integer \(n,(-1 \sqrt{-1})^{4 n+5}\) is:

    Solution

    As we know,

    \(i=\sqrt{-1} \)

    \(i^{2}=-1 \)

    \(i^{3}=-i \)

    \(i^{4}=1 \)

    \(i^{4 n}=1\)

    Given,

    \((-1 \sqrt{-1})^{4 n+5}\) where \(n\) is a positive integer

    \(=(-1 \times i)^{4 n+5} \)

    \(=(-i)^{4 n+5} \)

    \(=(-i)^{4 n} \times(-i)^{5} \)

    \(=(-i)^{4 n} \times(-i)^{4} \times(-i)^{1} \)

    \(=1 \times 1 \times(-i) \)

    \(=-i\)

  • Question 9
    3 / -1

    \(\int_{0}^{\frac{\pi}{2}} \frac{\sin x}{\sin x+\cos x} d x\) is equal to?

    Solution

    \(I=\int_{0}^{\frac{\pi}{2}} \frac{\sin x}{\sin x+\cos x} d x\) .....(i)

    Using identity, \(\int_{\mathrm{a}}^{\mathrm{b}} \mathrm{f}(\mathrm{x}) \mathrm{d} \mathrm{x}=\int_{\mathrm{a}}^{\mathrm{b}} \mathrm{f}(\mathrm{a}+\mathrm{b}-\mathrm{x}) \mathrm{d} \mathrm{x}\)

    \(I=\int_{0}^{\frac{\pi}{2}} \frac{\sin \left(\frac{\pi}{2}-\mathrm{x}\right)}{\sin \left(\frac{\pi}{2}-\mathrm{x}\right)+\cos \left(\frac{\pi}{2}-\mathrm{x}\right)} \mathrm{dx}\)

    \(\Rightarrow I=\int_{0}^{\frac{\pi}{2}} \frac{\cos x}{\cos x+\sin x} d x\) ....(ii)

    On adding eqn. (i) and (ii), we get

    \(2 I=\int_{0}^{\frac{\pi}{2}} \frac{\sin x+\cos x}{\sin x+\cos x} d x\)

    \(\Rightarrow 2 I=\int_{0}^{\frac{\pi}{2}} d x\)

    \(\Rightarrow 2 I=\frac{\pi}{2}\)

    \(I=\frac{\pi}{4}\)

  • Question 10
    3 / -1

    Find the value of \(i^{1325}\) where \(i=\sqrt{-1}\).

    Solution

    As we know,

    \(i=\sqrt{-1} \)

    \(i^{2}=-1 \)

    \(i^{4 n}=1\)

    Given,

    \(i^{1325} \)

    \(=i^{(1324+1)} \)

    \(=\left(i^{4}\right)^{331} \times i \)

    \(=1 \times i \quad\left[\because i^{4 n}=1\right] \)

    \(=i \)

    \(\therefore i^{1325}=i\)

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now