Given:
\(m_{p}=1.6 \times 10^{-27} \mathrm{~kg}, g=10 \mathrm{~ms}^{-2}\)
\(\mathrm{m}_{\mathrm{e}}=9.1 \times 10^{-27} \mathrm{Kg}\)
\(\mathrm{h}=1 \mathrm{~mm}=10^{-3} \mathrm{~m}\)
\(V=5 \mathrm{~V}\)
Time of flight of electron \(t_{e}=\sqrt{\frac{2 h}{a}}\) (ignoring gravity)
We know that \(\mathrm{F}=\mathrm{ma}\)
Similarly \(\mathrm{F=e E}\)
\(\therefore \mathrm{a}=\frac{e E}{m}\left[\right.\) also \(\left.\mathrm{E}=\mathrm{V} / \mathrm{d}=\frac{5}{10^{-3}}=5000 \mathrm{Vm}^{-1}\right]\)
\(\therefore \mathrm{t}_{\mathrm{e}}=\sqrt{\frac{2 \mathrm{hm}_{e}}{e E}}=\sqrt{\frac{2 \times 10^{-3} \times 9.1 \times 10^{-31}}{1,6 \times 10^{-19} \times 5000}}\)
\(=\left[\frac{2 \times 9.1 \times 10^{-34}}{1.6 \times 5 \times 10^{-16}}\right]^{1 / 2}=\left[2.275 \times 10^{-18}\right]^{1 / 2}\)
\(t_{e} \simeq 1.5 \times 10^{-9} \mathrm{~S}\) or \(\simeq 1.5 \mathrm{~ns}\)
Time flight for proton is
\(t_{p}=\sqrt{\frac{2 h m_{p}}{e E}}\)
\(=\sqrt{\frac{2 \times 10^{-3} \times 1.6 \times 10^{-27}}{1.6 \times 10^{-19} \times 5000}}=\left[\frac{2 \times 10^{-30}}{5 \times 10^{-16}}\right]^{1 / 2}\)
\(=\left[0.4 \times 10^{-14}\right]^{1 / 2}\)
\(=\left[4000 \times 10^{-18}\right]^{1 / 2}\)
\(=63.25 \times 10^{-9}\)
\(t_{p}=63.25 \mathrm{~ns}\)