Given:
\(t_{1}=2 \mathrm{~s} \)
\(\overrightarrow{a_{1}}=(6 \hat{i}+4 \hat{j}) \mathrm{m} / \mathrm{s}^{2} \)
\(t_{2}=5 \mathrm{~s} \)
\(\overrightarrow{a_{2}}=(4 \hat{i}+(-6) \hat{j}) \mathrm{m} / \mathrm{s}^{2}
\)
The two values of the acceleration vector are perpendicular to each other.
We can verify that by evaluating their dot product:
\(\overrightarrow{a_{1}} \cdot \overrightarrow{a_{2}}=(6 \hat{i}+4 \hat{j}) \cdot(4 \hat{i}-6 \hat{j})=0\)
Since, the radius vector in circular motion is anti-parallel to the centripetal acceleration,
Radius vectors at each instant \(\left(t_{1}=2 \mathrm{~s}\right.\) and \(\left.t_{2}=5 \mathrm{~s}\right)\) are also perpendicular to each other.
Therefore, \(\vec{r}_{1}\) points to the east while \(\vec{r}_{2}\) points to the south.
Since, the movement is counterclockwise,
therefore, between the two instants is a three-quarter cycle.
Therefore, the period is given by the form:
\(t_{2}-t_{1}=\frac{3 T}{4}=3 \mathrm{~s} \)
\(\Rightarrow T=4 \mathrm{~s}\)
The magnitude of the acceleration is:
\(a =\sqrt{a_{x}^{2}+a_{y}^{2}} \)
\(=\sqrt{\left(6 \mathrm{~m} / \mathrm{s}^{2}\right)^{2}+\left(4 \mathrm{~m} / \mathrm{s}^{2}\right)^{2}} \)
\(=7.21 \mathrm{~m} / \mathrm{s}^{2}\)
Now, we want to know the value of the radius, it can be obtained from:
\(a_{c}=\frac{V^{2}}{r}\)
\(=\frac{(2 \pi r / T)^{2}}{r} \)
\(=\frac{4 \pi^{2} r^{2}}{T^{2} r} \)
\(\Rightarrow r=\frac{a_{c} T^{2}}{4 \pi^{2}} \)
\(=\frac{(7.21)(4)^{2}}{4 \pi^{2}} \)
\(=2.92 \mathrm{~m} .\)