Self Studies

Area Related to Circles Test - 20

Result Self Studies

Area Related to Circles Test - 20
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    In the figure, if the $$\angle AOB=60^{\circ}$$ and radius is $$12 $$cm, then find the area of the segment AXB.$$(\pi =3.14,\:\sqrt{3}=1.73)$$ 

    Solution
    Area of the  segment AXB $$ = $$ Area of the sector OAXB $$ - $$ Area of triangle OAB.

    The triangle OAB is an equilateral triangle since the length of sides are equal to the radius of the circle  and an angle is $$ {60}^{0} $$

    Area of an equilateral triangle with length of side $$ a = \dfrac { \sqrt { 3 } }{ 4 } { a }^{ 2 } $$

    Area of a sector of a circle of radius 'r' and angle  $$ \theta = \dfrac {

    \theta  }{ 360 } \pi {r}^{2}$$

    Hence,
    Area of segment AXB $$ = \dfrac {60}{360} \times 3.14 \times {12}^{2} - \dfrac{1.73}{4} \times {12}^{2} = 75.36 - 62.28 = 13.08   sq  cm $$
  • Question 2
    1 / -0

    The radius of a circle is $$7 cm$$, then area of the sector of this circle if the corresponding angle is:
    $$3$$ right angles.
    Solution

    3 right angles $$ = 3 \times {90}^{0} = {270}^{0} $$

    Area of a sector of a circle of radius 'r' and angle 

    Area of a sector  = $$\dfrac { \theta  }{ 360 } \pi {r}^{2}$$


    Hence, area of the sector of the circle of  radius $$ 7 $$ cm and angle $$

    { 270 }^{ 0 } = \dfrac { 270 }{ 360 } \times \dfrac { 22 }{ 7 } \times 7 \times

    7\quad = 115.5  {cm}^{2} $$


  • Question 3
    1 / -0
    The radius of a circle is $$7 cm$$, then area of the sector of this circle if the corresponding angle is:$$210^{\circ}$$ is 

    Solution
    Area of a sector of a circle of radius 'r' and angle  $$ \theta = \dfrac { \theta  }{ 360 } \pi {r}^{2}$$

    Hence,area of the sector of the circle of  radius $$ 7 $$ cm and angle $$ { 210 }^{

    0 } = \dfrac { 210 }{ 360 } \times \dfrac { 22 }{ 7 } \times 7 \times

    7\quad = 89.83  {cm}^{2} $$


  • Question 4
    1 / -0
    The diameter of a circle is $$10$$ cm, then find the length of the arc, when the corresponding central angle is $$180^{\circ}$$.  $$(\pi =3.14)$$
    Solution
    Radius of the circle $$ = \dfrac {\text{Diameter}}{2} = 5 $$ cm 

    Length of an arc subtending an angle $$ \theta  = \dfrac { \theta  }{ 360^o }

    \times 2\pi R $$, where $$R$$ is the radius of the circle. 

    So, length of the arc $$ = \dfrac {180^o}{360^o} \times 2 \times 3.14\times 5  = 15.7 $$ cm

  • Question 5
    1 / -0
    The diameter of a circle is $$10$$ cm, then find the length of the arc, when the corresponding central angle is $$144^{\circ}$$.$$(\pi =3.14)$$
    Solution
    Radius of the circle $$ = \dfrac {Diameter}{2} = 5  cm $$

    Length of an arc subtending an angle $$ \theta  = \dfrac { \theta  }{ 360 }

    \times 2\pi R $$ where $$R$$ is the radius of the circle. 


    So, length of the arc $$ = \dfrac {144}{360} \times 2 \times 3.14 \times 5\ cm$$  

                                     $$=\dfrac{144}{360}\times 31.7\ cm$$
                                     $$=12.56\ cm$$
  • Question 6
    1 / -0
    The radius of a circle is $$7 cm$$, then area of the sector of this circle if the corresponding angle is $$30^{\circ}$$ is 
    Solution
    Area of a sector of a circle of radius '$$r$$' and angle $$ = \dfrac { \theta  }{ 360 } \pi {r}^{2}$$
    Hence, area of the sector of the circle of  radius $$ 7 $$ cm and angle $$ = \dfrac { 30 }{ 360 } \times \dfrac { 22 }{ 7 } \times 7 \times 7 = 12.83 \ \text{cm}^{2} $$
  • Question 7
    1 / -0
    In the figure, $$\angle POQ=30^o$$, $$PM \perp OQ$$  and radius $$OP =12 \ cm$$, then find the  area of segment $$PRQ$$ (Given $$\pi= 3.14$$).

    Solution
    Radius $$OP=OQ=r=12$$ cm

    $$\theta =30^o$$

    and $$PM$$ is perpendicular to $$OQ$$

    Area of a sector $$OPQR$$ $$\ \ \ =\pi r^2 \left (\dfrac{\theta}{360^o} \right )$$

                                                 $$=3.14\times (12)^2\times \left (\dfrac{30}{360^o} \right )$$

                                                 $$=37.68 \ cm^2$$

    In $$\triangle OMP , \sin (30^o)=\dfrac{PM}{OP}...........(1)$$

    Area of $$\triangle OQP=\dfrac{1}{2} \times OQ\times PM$$

                               $$=\dfrac{1}{2} \times 12\times OP\times  \sin 30^0$$     [from $$(1)$$]

                               $$=\dfrac{1}{2}\times12\times 12\times  \dfrac{1}{2}$$

                               $$=36 \ cm^2$$

    Area of segment $$PRQ =$$ (Area of sector $$OPQR$$)$$ -$$ (Area of $$\triangle OQP)$$

                                          $$=(37.68-36)\ cm^2$$

                                          $$=1.68 \ cm^2$$
  • Question 8
    1 / -0
    In the given figure, $$ABCD$$ is a square of side $$5\ cm$$ inscribed in a circle. Find the area of the shaded region
    [Take $$\pi \, =\, 3.14$$]

    Solution
    Diagonal $$AC$$ is the diameter of the circle with centre $$O$$
    $$\therefore OC=OA=$$ radius of the circle.

    Given,
    $$AB=AC=5\ cm$$
    $$\triangle ABC$$ is a right-angled triangle.
    $$\therefore AC^2=AB^2+AC^2$$
                      $$=5^2+5^2$$
                      $$=25+25$$
                      $$=50 cm$$
    $$\Rightarrow AC=5\sqrt 2$$

    $$\therefore OA=OC=\cfrac{AC}{2}$$
               Radius $$=\cfrac{5\sqrt 2}{2}$$

    Area of square $$=AC^2$$
                            $$=5^2$$
                            $$=25$$

    Area of circle $$=\pi r^2$$
                         $$=3.14\times \left(\cfrac{5\sqrt 2}{2}\right)^2$$
                         $$=3.14\times \cfrac{50}{4}$$
                         $$=39.25$$

    $$\therefore$$Area of the shaded region $$=$$ Area of circle $$-$$ Area of square 
                                                    $$=39.25-25$$
                                                    $$=14.25\ cm^2$$    
  • Question 9
    1 / -0
    In the figure, m$$\angle POQ = 30^{\circ}$$ and radius OP =12 cm. Find the given area of sector O-PRQ (Given $$\pi$$ = 3.14)

    Solution
    Radius $$OP=OQ=r=12$$ CM

    $$\theta =30$$

    and PM is perpendicular to OQ

    Area of a sector of a circle $$=\pi r^2 \left (\dfrac{\theta}{360} \right )$$

                                                 $$=3.14\times (12)^2\times \left (\dfrac{30}{360} \right )$$

                                                 $$=37.68 cm^2$$
  • Question 10
    1 / -0
    The circumference of a given circular park is $$55$$ m. It is surrounded by a path of uniform width $$35$$ cm. Find the area of the path.
    Solution
    Circumference of circular park $$=55$$ m
    $$2\pi r = 55$$ m
    $$\Rightarrow r = \dfrac{7}{2\times 22}\times 55 = \dfrac{35}4$$
    Area of this field:
    $$\pi\times r^2 = \pi\times \left(\dfrac{35}4\right)^2 = 240.625\ m^2$$
    A uniform width path is there in surrounding this circular field.
    Width $$= 0.35$$ m
    Radius increased by $$0.35$$ m
    Now new radius will be $$R = 0.35 + \dfrac{35}4 = \dfrac{910}{100}$$ cm
    New Area $$= \pi\times\left(\dfrac{910}{100}\right)^2 = 260.26\ m^2$$
    Area of extended path:
    $$A = 260.26-240.625 = 19.635\ m^2$$

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now