Self Studies

Surface Areas and Volumes Test - 14

Result Self Studies

Surface Areas and Volumes Test - 14
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    A solid in shape of a frustum is 21 cm high. Its radius of top is 10 cm and diameter of bottom is 30 cm. The volume of the solid is
    Solution

    Volume of frustum = $$\displaystyle \dfrac{1}{3}\pi h\left ( r_{1}^{2}+r_{1}r_{2}+r_{2}^{2} \right )$$
    = $$\displaystyle \dfrac{1}{3}\times \dfrac{22}{7}\times 21\times \left ( 10^{2}+10\times 15+15^{2} \right )cm^{3}$$
    = $$\displaystyle \dfrac{1}{3}\times \dfrac{22}{7}\times 21\times 475cm^{3}$$
    = 10450 $$\displaystyle cm^{3}$$

  • Question 2
    1 / -0
    A spherical iron ball of radius $$9$$ cm is melted and recast into three spherical balls. If the radii of two balls are $$1$$ cm and $$8$$ cm, find the radius of the third ball.
    Solution
    Let the radius of big ball $$R=9$$ cm

    Let the radii of the three balls be $$r_1,\ r_2,\ r_3$$ 

    where $$r_1=1\ cm, r_2=8\ cm$$
     
    We know 

    Volume of iron ball $$=$$ Sum of volumes of $$3$$ balls

    $$\Rightarrow \dfrac { 4 }{ 3 } \pi { R }^{ 3 }=\dfrac { 4 }{ 3 } \pi \left( { r }_{ 1 }^{ 3 }+{ r }_{ 2 }^{ 3 }+{ r }_{ 3 }^{ 3 } \right)$$

    $$ \Rightarrow { \left( 9 \right)  }^{ 3 }={ 1 }^{ 3 }+{ 8 }^{ 3 }+{ r }_{ 3 }^{ 3 }$$

    $$\Rightarrow 729=1+512+{ r }_{ 3 }^{ 3 }$$

    $$\Rightarrow 216={ r }_{ 3 }^3$$

    $$r_3=\sqrt [ 3 ]{ 216 } =6$$ cm

    Therefore radius of third sphere is $$6$$ cm.
  • Question 3
    1 / -0
    Given that the volume of a cone is $$\displaystyle 2355cm^{3}$$ and the area of its base is $$\displaystyle 314cm^{2}$$ Its height is
    Solution
    $$\displaystyle V_{cone}=\frac{1}{3}\pi r^{2}h$$
    or 2355=$$\displaystyle \frac{1}{3}\times 314h$$
    $$\displaystyle \therefore h=22.5 m$$'
  • Question 4
    1 / -0
    A metallic sphere of radius $$10.5 cm$$ is melted and then recast into small cones each of radius $$3.5 cm$$ and height $$3 cm$$. The number of such cones is
    Solution
    Radius of sphere $$\displaystyle (r)=10.5cm=\frac {21}{2}cm$$

    $$\therefore $$ Volume $$\displaystyle =\frac {4}{3}\pi r^{3}=\frac {4}{3}\pi \times \frac {21}{2}\times \frac {21}{2}\times \frac {21}{2}$$

    Let $$n$$ cones are formed
    Radius of cone $$\displaystyle (R)=3.5cm=\frac {7}{2}cm$$
    Height of cone $$(h)=3cm$$
    Volume of $$1$$ cone $$\displaystyle =\frac {1}{3}\pi R^{2}h$$
    $$\displaystyle =\frac {1}{3}\pi \times \frac {7}{2}\times \frac {7}{2} \times 3=\frac {49}{4}\pi$$

    Volume of $$n$$ cones $$\displaystyle =\frac {49n\pi}{4}$$
    Vol. of cylinder $$=$$ Vol. of $$n$$ cones

    $$\displaystyle \frac {4\pi}{3}\times \frac {21}{2}\times \frac {21}{2}\times \frac {21}{2} = \frac {49n\pi}{4}$$

    $$\therefore n=2 \times 3 \times 21$$
    $$n=126$$ cones.

  • Question 5
    1 / -0

    Fill in the blank:

    The volume of a frustum cone top and bottom area of a circle and height is given. Choose the formula which satisfy the given statement ________________.($$A_1, A_2 , h$$ are area of top circle, area of bottom circle and height of frustum respectively).

    Solution

    Let radius of top & bottom be $${ r }_{ 1 }$$ and $${ r }_{ 2 }$$ & height be h.
    Now, Area of top = $$\pi { r }_{ 1 }^{ 2 }={ A }_{ 1 }$$
             Area of bottom = $$\pi { r }_{ 2 }^{ 2 }={ A }_{ 2 }$$
    $$\therefore \quad $$ Volume of frustum = $$\dfrac { 1 }{ 3 } \left( { A }_{ 1 }+{ A }_{ 2 }+\sqrt { { A }_{ 1 }{ A }_{ 2 } }  \right) \times h$$

  • Question 6
    1 / -0
    Find the volume of the frustum cone whose base and top radius is 20 ft and 10 ft respectively. The height of the cone is 300 ft. (Use $$\pi$$ = 3). 
    Solution
    Volume of the frustum cone is V = $$\displaystyle{\frac{\pi h}{3}}(R^2 + Rr + r^2)$$
    $$R = 20 ft, r = 10 ft, h = 300 ft$$
    $$V = (3 \times 300)/(3) [20^2 + 20 \times 10 + 10^2]$$
         $$= 300[400 + 200 + 100]$$ 
         $$= 300[700]$$
         $$= 210,000 ft^3$$
  • Question 7
    1 / -0
    A cone of height $$7$$ cm. and base radius $$3$$ cm. is carved from a rectangular block of wood of dimensions $$10 cm. \times 5 cm. \times 2$$ cm. The percentage of wood wasted is
    Solution
    Volume of block $$=(10\times 5\times 2)cm^3$$
    $$=100 cm^3$$
    Volume of cone $$=\left (\frac {22}{7}\times 9\times 7\right )cm^3$$
    $$=66 cm^3$$
    $$\Rightarrow$$ volume of wood wasted $$=(100-66)cm^3=34 cm^3$$
    $$\therefore$$ The percentage of wood wasted $$=34$$%
  • Question 8
    1 / -0
    Find the volume of the frustum cone whose base and top radius is 11 in and 6 in respectively. The height of the cone is 36 in. (Use $$\pi$$ = 3.14). 
    Solution
    Volume of the frustum cone is $$V =  \displaystyle{\frac{\pi h}{3}}(R^2 + Rr + r^2)$$
    $$R = 11 in, r = 6 in, h = 36 in$$ 
    $$V = (3.14 \times 36)/(3)[11^2 + 11 \times 6 + 6^2]$$
        $$= 3.14 \times 12[121 + 66 + 36]$$
        $$= 37.68[223]$$
        $$= 8,402.64\, in^3$$
  • Question 9
    1 / -0
    The base and top diameter of a cone is 1.2 mm and 0.5 mm respectively. The height of the cone is 24 mm. What is the volume of frustum of a cone? (Use $$\pi$$ = 3).
    Solution
    Volume of the frustum cone is $$V = \displaystyle{\frac{\pi h}{3}}(R^2 + Rr + r^2)$$

    D = 0.5 m, d = 0.1 m, h = 4 m

    Diameter = radius/2

    Radius = 2 $$\times$$ diameter

    Therefore, R = 2.4 mm, r = 0.25 mm

    $$V = (3 \times 24)/(3)[2.4^2 + 2.4 \times 0.25 + 0.25^2]$$

         $$=$$ 24[5.76 + 0.6 + 0.0625]

         $$=$$ 24[6.4225]

         $$=$$ 154.14 mm$$^3$$

  • Question 10
    1 / -0
    The volume of a frustum cone is 1,600 $$mm^3$$, whose base and upper area of a circle is 16 and 100 $$mm^2$$. Find the height of the cone.
    Solution
    Volume of a frustum cone = $$\frac{1}{3} (A_1 + A_2 + \sqrt{A_1 A_2 }) h$$
    1,600 = $$\frac{1}{3} (16 + 100 + \sqrt{16 \times 100 }) \times h$$
    1,600 = $$\frac{1}{3} (116 + \sqrt{1600 }) \times h$$
    1,600 = $$\frac{1}{3} (116 + 40) \times h$$
    1,600 = $$\frac{1}{3} \times 156 \times h$$
    h = $$(1,600 \times 3)/156 = 30.76 mm$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now