Image 1
Let us assume the frustum is cut an open
Image 2
By ratio and proportion
$$\cfrac { { l }_{ 1 } }{ R } =\cfrac { l }{ R-r } \Rightarrow { l }_{ 1 }=\cfrac { Rl }{ R-r } $$
From figure,
$${ l }_{ 2 }={ l }_{ 1 }-l$$
$${ l }_{ 2 }=\cfrac { Rl }{ R-r } -l\Rightarrow \cfrac { Rl(R-r)l }{ R-r } $$
$${ l }_{ 2 }=\cfrac { rl }{ R-r } $$
The length of the arc is circumference of base
$${ S }_{ 1 }=2\pi r,{ S }_{ 2 }=2\pi r$$
From figure,
$$A=\cfrac { 1 }{ 2 } { S }_{ 1 }{ l }_{ 1 }-\cfrac { 1 }{ 2 } { S }_{ 2 }{ l }_{ 2 }$$$$=\cfrac { 1 }{ 2 } \left( 2\pi R \right) \left( \cfrac { Rl }{ R-r } \right) -\cfrac { 1 }{ 2 } \left( 2\pi r \right) \left( \cfrac { rl }{ R-r } \right) $$
$$\Rightarrow \cfrac { \pi { R }^{ 2 }l-\pi { r }^{ 2 }l }{ R-r } $$
$$A=\cfrac { \pi \left( { R }^{ 2 }-{ r }^{ 2 } \right) l }{ R-r } $$
$$A=\cfrac { \pi (R-r)\left( R+r \right) l }{ \left( R-r \right) } $$
$$A=\pi \left( R+r \right) l$$
Now, $$l=\sqrt { { \left( R-r \right) }^{ 2 }+{ h }^{ 2 } } $$
$$A=\pi \left( R+r \right) \sqrt { { \left( R-r \right) }^{ 2 }+{ h }^{ 2 } } $$ (Lateral surface area)
Total area
$$A=\pi \left( R+r \right) \sqrt { { \left( R-r \right) }^{ 2 }+{ h }^{ 2 } } +\pi { r }^{ 2 }+\pi { R }^{ 2 }$$