Self Studies

Surface Areas and Volumes Test - 15

Result Self Studies

Surface Areas and Volumes Test - 15
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Find the volume of a frustum cone, whose base and upper area of a circle is 6 and 6 $$cm^2$$. The height of the cone is 100 cm.
    Solution

    Volume of a frustum cone $$= \frac{1}{3} (A_1 + A_2 + \sqrt{A_1 A_2 }) h$$

    $$= \frac{1}{3} (6 + 6 + \sqrt{6 \times 6}) \times 100$$

    $$=\frac{1}{3} (12 + \sqrt{36}) \times 100$$

    $$= \frac{1}{3} (12+6) \times 100$$

    $$=\frac{1}{3} \times 18 \times 100$$

    $$= \frac{1,800}{3}$$

    $$= 600 cm^3$$

  • Question 2
    1 / -0
    The curved surface area of frustum cone is 612 $$mm^2$$. The diameter of a top cone is 10 and the radius of the bottom cone is 4 mm.  Find the slant height. (Use $$\pi$$ = 3).
    Solution

    Curved surface area = $$\pi$$(R + r)s

    Diameter = radius $$\times 2$$

    Radius, R = 5 mm, r = 4 mm

    612 = $$3 \times (5 + 4) \times s$$

    612 = $$3 \times (9) \times s$$

    $$612/3 \times 9 $$ = s

    Slant Height = 22.66 mm

  • Question 3
    1 / -0
    Find the volume of a frustum cone, whose base and upper area of a circle is 20 and 80 $$m^2$$. The height of the cone is 45.5 m.
    Solution
    Volume of a frustum cone = $$\frac{1}{3} (A_1 + A_2 + \sqrt{A_1 A_2 }) h$$
    $$= \frac{1}{3} (20 + 80 + \sqrt{20 \times 80 }) \times 45.5$$
    $$= \frac{1}{3} (100 + \sqrt{1600 }) \times 45.5$$
    $$= \frac{1}{3} (100 + 40) \times 45.5$$
    $$= \frac{1}{3} \times 140 \times 45.5$$
    $$=$$ 2,123.33 $$m^3$$
  • Question 4
    1 / -0
    The base and top radius of a cone is 36 cm and 16 cm respectively. The height of the cone is 12.6 cm. What is the volume of frustum of a cone? (Use $$\pi$$ = 3.14). 

    Solution
    Volume of the frustum cone V = $$\displaystyle{\frac{\pi h}{3}}(R^2 + Rr + r^2)$$

    $$R = 36 cm, r = 16 cm, h = 12.6 cm$$

    $$V = (3.14 \times 12.6)/(3)[362 + 36 \times 16 + 162]$$

        $$= 3.14 \times 4.2[1,296 + 576 + 256]$$

        $$= 13.188[2,128]$$

        $$= 28,064.064 cm^3$$

  • Question 5
    1 / -0
    Find the volume of the frustum cone whose base and top
    radius is 21 in and 5 in respectively. The height of the cone is 300 in. (Use $$\pi$$ = 3). 
    Solution
    Volume of the frustum cone is $$V = \displaystyle{\frac{\pi h}{3}}(R^2 + Rr + r^2)$$
    $$R = 21 ft, r = 5 ft, h = 300 ft$$
    $$V = (3 \times 300)/(3)[21^2 + 21 \times 5 + 5^2]$$
        $$= 300[441 + 105 + 25]$$
        $$= 300[571]$$
        $$=$$ 171,300 in$$^3$$
  • Question 6
    1 / -0
    Find the volume of the frustum cone whose base and top radius is 12.4 ft and 4.5 ft respectively. The height of the cone is 1,200 ft. (Use $$\pi$$ = 3). 
    Solution
    Volume of the frustum cone is $$V = \displaystyle{\frac{\pi h}{3}}(R^2 + Rr + r^2)$$
    $$R = 12.4 ft, r = 4.5 ft, h = 1,200 ft$$
    $$V = (3 \times 1,200)/(3)[12.4^2 + 12.4 \times  4.5 + 4.5^2]$$
         $$= 1,200[153.76 + 55.8 + 20.25]$$
         $$= 1,200[229.81]$$
         $$=$$ 275,772 ft$$^3$$
  • Question 7
    1 / -0
    The total surface area of a frustum of cone is calculated as ________________.
    Solution
    Image 1
    Let us assume the frustum is cut an open
    Image 2
    By ratio and proportion
    $$\cfrac { { l }_{ 1 } }{ R } =\cfrac { l }{ R-r } \Rightarrow { l }_{ 1 }=\cfrac { Rl }{ R-r } $$
    From figure,
    $${ l }_{ 2 }={ l }_{ 1 }-l$$
    $${ l }_{ 2 }=\cfrac { Rl }{ R-r } -l\Rightarrow \cfrac { Rl(R-r)l }{ R-r } $$
    $${ l }_{ 2 }=\cfrac { rl }{ R-r } $$
    The length of the arc is circumference of base
    $${ S }_{ 1 }=2\pi r,{ S }_{ 2 }=2\pi r$$
    From figure,
    $$A=\cfrac { 1 }{ 2 } { S }_{ 1 }{ l }_{ 1 }-\cfrac { 1 }{ 2 } { S }_{ 2 }{ l }_{ 2 }$$$$=\cfrac { 1 }{ 2 } \left( 2\pi R \right) \left( \cfrac { Rl }{ R-r }  \right) -\cfrac { 1 }{ 2 } \left( 2\pi r \right) \left( \cfrac { rl }{ R-r }  \right) $$
    $$\Rightarrow \cfrac { \pi { R }^{ 2 }l-\pi { r }^{ 2 }l }{ R-r } $$
    $$A=\cfrac { \pi \left( { R }^{ 2 }-{ r }^{ 2 } \right) l }{ R-r } $$
    $$A=\cfrac { \pi (R-r)\left( R+r \right) l }{ \left( R-r \right)  } $$
    $$A=\pi \left( R+r \right) l$$
    Now, $$l=\sqrt { { \left( R-r \right)  }^{ 2 }+{ h }^{ 2 } } $$
    $$A=\pi \left( R+r \right) \sqrt { { \left( R-r \right)  }^{ 2 }+{ h }^{ 2 } } $$ (Lateral surface area)
    Total area
    $$A=\pi \left( R+r \right) \sqrt { { \left( R-r \right)  }^{ 2 }+{ h }^{ 2 } } +\pi { r }^{ 2 }+\pi { R }^{ 2 }$$

  • Question 8
    1 / -0
    Find the curved surface area of a frustum cone whose larger and smaller radius is 12.2 and 8.8 ft. The slant height is 5.2 ft. (Use $$\pi$$ = 3.14)
    Solution

    Curved surface area of a frustum cone = $$\pi$$(r + R)s 

    = 3.14 $$\times$$ (12.2 + 8.8) $$\times$$ 5.2

    = 3.14 $$\times$$ (21) $$\times$$ 5.2

    Curved surface area of a frustum cone = 342.888 ft$$^2$$

  • Question 9
    1 / -0
    A flower pot in the shape of a frustum with the top and bottom circles of radii $$20$$  in and $$10$$ in. Its depth is $$30$$ in. Find its volume.
    Solution
    Volume of the frustum cone $$=\displaystyle \frac{\pi h}{3} [R^2 + Rr + r^2] $$
                       
                                                    $$=\displaystyle \frac{\pi \times 30}{3} [{20}^2 + 20 \times 10 + {10}^2] $$

                                                    $$=10 \pi (400 + 200 + 100)$$
                                                    $$=7,000\pi\ in^3$$
  • Question 10
    1 / -0
    A flower pot in the shape of a frustum with the top and bottom circles of radii $$15$$ cm and $$10$$ cm. Its depth is $$36$$ cm. Find the surface area.
    Solution
    Surface area = $$ \pi (R + r) \sqrt{(R - r)^2 + h^2} + \pi R^2 + \pi r^2$$
    = $$ \pi (15 + 10) \sqrt{(15 - 10)^2 + {36}^2} + \pi {10}^2 + \pi {15}^2$$
    = $$25 \pi \sqrt{1,321} + 325 \pi $$
    = $$25 \pi \times 36.34 + 325 \pi$$
    = $$1,233.5 \pi cm^2$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now