Self Studies

Surface Areas and Volumes Test - 20

Result Self Studies

Surface Areas and Volumes Test - 20
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    A solid sphere of radius $$x$$ cm is melted and recast into a shape of a solid cone of radius $$x$$ cm. The height of the cone is:
    Solution
    Let the height of the cone be $$h$$ $$cm$$
    Volume remains constant after the recast.
    Therefore, volume of cone $$=$$ volume of sphere so,
    $$\cfrac { 1 }{ 3 } \pi { x }^{ 2 }h=\cfrac { 4 }{ 3 } \pi { x }^{ 3 }\\ { x }^{ 2 }h=4{ x }^{ 3 }\\ h=4x$$
  • Question 2
    1 / -0
    A sphere is melted and half of the molten liquid is used to form $$11$$ identical cubes, whereas the remaining half is used to form $$7$$ identical smaller spheres. The ratio of the side of the cube to the radius of the new small sphere is -
    Solution
    Volume of $$11$$ small cubes $$=$$ Volume of $$7$$ small spheres
    $$11 \times a^3=7 \times \dfrac 43 \times (\pi) \times r^3$$

    $$(\dfrac ar)^3=7\times \dfrac 43 \times \dfrac {22}{7} \times \dfrac {1}{11}$$

    $$(\dfrac ar)^3=\dfrac 83$$

    $$\dfrac ar=\left(\dfrac 83\right)^{\frac 13}$$
  • Question 3
    1 / -0
    A metallic cube of edge $$1\ cm$$ is drawn into a wire of diameter $$4\ mm$$, then the length of the wire is:
    Solution
    Edge of cube $$=1$$ cm
    Volume of cube $${ (1) }^{ 3 }=1 cm^{ 3 }=1000 mm^{ 3 }$$
    Diameter of wire $$=4mm$$
    Radius of wire $$=2mm $$
    Now, volume remains same 
    Therefore, volume of wire $$=$$ volume of cube 
    $$\pi { r }^{ 2 }h=1000 mm^{ 3 }\\ \pi \times 2\times 2\times h=1000\\ h=\cfrac { 1000 }{ 4\pi  } \\ =\cfrac { 250 }{ \pi  } mm\\ h=\cfrac { 25 }{ \pi  } cm$$
  • Question 4
    1 / -0
    The edges of three cubes of metal are $$3$$ cm, $$4$$ cm and $$5$$ cm. They are melted and formed in to a single cube. Find the edge of the new cube.
    Solution
    Volume of  cubes $$=3^3+4^3+5^3=27+64+125=216$$

    Volume of new cube $$=$$ edge$$^3=216 =6^3$$

    $$\therefore $$ edge $$=6$$ cm 
  • Question 5
    1 / -0
    A cylindrical hut $$4$$ m tall and $$7$$ m in diameter is surmounted by aright circular cone of semi-vertical angle $$45$$ $$^{\circ}$$. The volume of air inside the hut is -
    Solution
    Total volume $$= \pi r^2 h + \displaystyle \frac{1}{3} \pi r^2 h'$$
    $$= \pi (3.5)^2  \times 4 + \dfrac{1}{3} \pi (3.5)^2 (3.5)^2$$
    $$=\pi (3.5)^2 \left [ 4 + \dfrac{3.5}{3} \right ]$$
    $$=198.9 \ \text{m}^3$$

  • Question 6
    1 / -0
    A drinking glass is in the shape of a frustum of a cone of height $$14\ cm$$. The diameters of its two circular ends are $$4\ cm$$ and $$2\ cm$$. Find the capacity of the glass.
    Solution
    Since glass is in the form of frustum, therefore,

    $$h =14 cm, r_1 = \dfrac{4}{2} = 2cm$$   and   $$ r_2 = \dfrac{2}{2} = 1 cm.$$

    $$\therefore$$ Capacity of frustum $$=$$ Volume of a frustum 

                                         $$\displaystyle  =\frac{1}{3} \pi h (r_1^2 + r_2^2 + r_1 r_2) = \frac{1}{3} \times \frac{22}{7} \times 14 (2^2 + 1^2 + 2 \times 1)$$

                                         $$\displaystyle = \frac{44}{3} (4+1+2) = \frac{44 \times 7}{3} = \frac{308}{3} = 102.67$$ sq. cm.
  • Question 7
    1 / -0
    STATEMENT - 1: The slant height of frustum of a cone is 4 cm. and perimeters of its circular ends are 18 cm. and 6 cm. then the curved surface area is 48 sq. cm.
    STATEMENT - 2: Curved surface area of frustum $$ = \pi (r_1+r_2) $$, where $$r_1$$ and $$r_2$$ are radii of the frustum and $$l$$ is a slant height.
    Solution
    Curved surface area offrustum $$= \pi (r_1 + r_2 ) l, $$ where $$r_1$$ 

    and $$r_2$$ are radii of frustum and $$l$$ is a slant height 
    $$=\displaystyle \frac{22}{7} \left ( \frac{9}{\pi} + \frac{3}{\pi} \right ) \times 4 = \frac{22}{ 7 \times \pi}(9+3) \times 4$$
    $$= \displaystyle \frac{22}{7} \times \frac{7}{22} (12) \times 4 = 48 cm^2$$
  • Question 8
    1 / -0
    The given figure shows a solid formed of a solid cube of side 40 cm and a solid cylinder of radius 20 cm and height 50 cm attached to the cubes as shown. Find the volume and the total surface area of the whole solid [Take $$\pi \, =\, 3.14$$]

    Solution
    Given: Side of the cube $$=40\ cm$$ and radius of the cylinder $$=20\ cm$$ and height of the cylinder $$=50\ cm$$

    Volume of cube $$=(side)^{3}$$

                                $$=(40)^{3}$$

                                $$=64000\ cm^{3}$$

    Volume of cylinder $$=\pi r^{2}h$$

                                     $$=3.14\times (20)^{2}\times 50$$

                                     $$=62800\ cm^{3}$$

    So, total volume of solid $$=64000+62800=126800\ cm^{3}$$


    Now, surface area of cube $$=6(side)^{2}$$

                                        $$=6(40)^{2}$$

                                        $$=9600\ cm^{2}$$

    The surface area of cylinder $$=2\pi rh$$

                                             $$=3.14\times 20\times 50$$

                                             $$=6280\ cm^{2}$$

    $$\therefore$$ Total surface area of solid $$=9600+6280=15880\ cm^{2}$$
  • Question 9
    1 / -0
    The given figure shows a solid formed of a solid cube of side $$40 cm$$ and a solid cylinder of radius $$20 cm$$ and height $$50 cm$$ attached to the cube as shown. Find the volume of the whole solid. $$\displaystyle \left [ Take\ \pi=3.14 \right ]$$.

    Solution
    Solid cube of side $$=40 cm$$ 
    Solid cylinder of radius $$=20 cm$$ and height $$=50 cm $$
    Volume of the whole solid $$=$$ Volume of cube $$+$$ Volume of cylinder
    $$V={ a }^{ 3 }+\pi { r }^{ 2 }h$$
    $$V={ (40) }^{ 3 }+3.14 \times { (20) }^{ 2 } \times 50$$
    $$V=126800{ cm }^{ 3 }$$
  • Question 10
    1 / -0
    A sphere of diameter 12.6 cm is melted and cast into a right circular cone of height 25.2 cm. The diameter base of the cone is 
    Solution
    Given:
    $$\Rightarrow$$ diameter of sphere$$(d)=12.6\ cm$$

    $$\Rightarrow$$ radius $$(r_1)= \dfrac{d}{2} = 6.3\ cm$$

    $$\Rightarrow$$ height of the cone$$ \ = 25.2\ cm$$
         Let radius of the cone $$= r$$

    Volume of sphere $$(V_s)$$ $$=$$ volume of cone $$(V_c)$$

    $$\Rightarrow$$ $$\dfrac {4}{3}\pi (r_1)^3=\dfrac {1}{3}\pi (r^2)\times h$$

    $$\Rightarrow$$ $$\dfrac {4}{3}\pi (6.3)^3=\dfrac {1}{3}\pi (r^2)\times 25.2$$

    $$\Rightarrow$$ $$r^2=\dfrac {4\times 6.3\times (6.3)^2}{25.2}$$

    $$\Rightarrow$$ $$r=6.3$$
    Diameter $$ \ D=2r=12.6 \ cm$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now