Self Studies

Surface Areas and Volumes Test - 27

Result Self Studies

Surface Areas and Volumes Test - 27
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Find the volume of the frustum cone whose base and top radius is $$10$$ cm and $$2$$ cm respectively. The height of the cone is $$3$$cm. (Use  $$\pi =\dfrac{22}{7}$$). 
    Solution
    Volume of frustum $$=\dfrac { 1 }{ 3 } \pi \left( { R }^{ 2 }+{ r }^{ 2 }+Rr \right) \times h$$

                                     $$=\dfrac { 1 }{ 3 } \times \dfrac { 22 }{ 7 } \left( { 10 }^{ 2 }+{ 2 }^{ 2 }+10\times 2 \right) \times 3$$

                                     $$=\dfrac { 22 }{ 7 } \left( 100+4+20 \right) =\dfrac { 22\times 124 }{ 7 } $$

                                    $$= 389.71$$ $${ cm }^{ 3 }$$
  • Question 2
    1 / -0
    Find the volume of the frustum cone whose base and top radius is $$5$$ mm and $$2$$ mm respectively. The height of the cone is $$15$$mm. (Use $$\pi$$ = 3.14). 
    Solution
    Volume of frustum  $$=\dfrac { 1 }{ 3 } \times \pi \left( { R }^{ 2 }+{ r }^{ 2 }+Rr \right) \times h$$

                                    $$=\dfrac { 1 }{ 3 } \times 3.14({ 5 }^{ 2 }+{ 2 }^{ 2 }+5\times 2)\times 15$$

                                    $$=15.70(25+4+10)=15.70\times 39$$

                                   $$= 612.3$$ $${ mm }^{ 3 }$$
  • Question 3
    1 / -0

    Find the volume of a frustum cone, whose base and upper area of a circle is 36 and 100 $$mm^2$$. The height of the cone is 32.5 mm.

    Solution

    Volume of a frustum cone = $$\frac{1}{3} (A_1 + A_2 + \sqrt{A_1 A_2 }) h$$

    = $$\frac{1}{3} (36 + 100 + \sqrt{36 \times 100}) \times 32.5$$

    = $$\frac{1}{3} (136 + \sqrt{3600}) \times 32.5$$

    = $$\frac{1}{3} (136+60) \times 32.5$$

    = $$\frac{1}{3} \times 196 \times 32.5$$

    = 2,123.33 $$mm^3$$

  • Question 4
    1 / -0
    Find the volume of the frustum cone whose base and top radius is $$0.1 cm$$ and $$0.01 cm$$ respectively. The height of the cone is $$3cm$$. (Use $$\pi$$ = 3). 
    Solution
    Volume of frustum $$ = \dfrac { 1 }{ 3 } \pi \left( { R }^{ 2 }+{ r }^{ 2 }+Rr \right) \times h$$

                                    $$= \dfrac { 1 }{ 3 } \times 3\left( { \left( 0.1 \right)  }^{ 2 }+{ \left( 0.01 \right)  }^{ 2 }+\left( 0.1\times 0.01 \right)  \right) \times 3$$

                                    $$= 3(0.01+0.0001+0.001)$$

                                    $$= 3\times 0.0111=0.0333{ cm }^{ 3 }$$
  • Question 5
    1 / -0
    A dish in the shape of a frustum of a cone has a height of $$6$$cm. Its top and its bottom have radii of $$24$$cm and $$16$$cm respectively. Find its curved surface area. ( in $$\displaystyle cm^{2}$$)
    Solution
    Curved surface area of a frustum of a cone $$=\pi l({ r }_{ 1 }+{ r }_{ 2 })$$  

    where $$ l $$ is the slant height of the cone $$ = \sqrt { { h }^{ 2 }+{ ({ r }_{ 1 }-{ r }_{ 2 }) }^{ 2 } } $$
    $$ h $$ is the height
    $$ { r }_{ 1 } $$ and $${ r }_{ 2 }$$ are the radii of the lower and upper ends of a frustum of a cone.

    So, $$l = \sqrt { { 6  }^{ 2 }+{ (24 - 16) }^{ 2 } } $$

     $$ l= 10  cm $$

    Hence, Curved Surface area of this frustum of a cone  $$=\pi \times 10 \times (24 + 16) = 400 \pi  {cm}^{2} $$
  • Question 6
    1 / -0
    A drum is in the shape of a frustum of a cone. Its top and bottom radii are $$20$$ ft and $$10$$ ft respectively. Its height is $$15$$ ft. It is fully filled with water. This water is emptied into a rectangular tank. The base of the tank has the dimensions $$100$$ ft $$\times 50$$ ft. Find the rise in the height of the water level in the tank.
    Solution
    Let $$h$$ be the height and $$R$$ and $$r$$ be the radii of the lower and upper ends of a frustum of a cone.

    Volume of a frustum of a cone $$ = \dfrac { 1 }{ 3 } \pi h({ R }^{ 2 }+{ r }^{ 2 }+Rr) $$

    Hence, volume of the drum $$ = \dfrac { 1 }{ 3 } \times \dfrac {22}{7} \times 15({ 20 }^{ 2 }+{ 10 }^{ 2 }+ 20 \times 10) $$

                                                   $$=  11,000 \ {ft}^{3} $$

    As this water is emptied into a cuboidal tank, volume of water in tank till height $$h  = 11,000  {ft}^{3} $$

    Volume of a cuboid of length $$(l)$$, breadth $$(b)$$ and height $$(h)$$ $$ = l \times b \times h $$

    So, $$ 100 \times 50 \times h =11,000 $$

    $$ \Rightarrow h = 2.2\ ft $$
  • Question 7
    1 / -0
    Find the volume of a frustum cone, whose base and upper area of a circle is $$40cm^2$$ and $$40$$ $$cm^2$$. The height of the cone is $$12$$ cm.
    Solution
    Volume of frustum  $$=\dfrac { 1 }{ 3 } \left( { A }_{ 1 }+{ A }_{ 2 }+\sqrt { { A }_{ 1 }{ A }_{ 2 } }  \right) \times h$$
                                     $$=\dfrac { 1 }{ 3 } \times \left( 40+40+\sqrt { 40\times 40 }  \right) \times 12$$
                                    $$=\left( 80+40 \right) \times 4=120\times 4$$
                                  $$  = 480 $$$${ cm }^{ 3 }$$
  • Question 8
    1 / -0
    The base and top radius of a truncated cone are $$20 mm$$ and $$10 mm$$ respectively. The height of the cone is $$360 mm$$. What is the volume of a truncated cone? (Use $$\pi$$ = 3). 
    Solution
    Since the truncated cone is in the shape of frustum, so volume of the truncated cone $$V =  \displaystyle{\frac{\pi h}{3}}(R^2 + Rr + r^2)$$

    Here, we have,

    $$R = 20 mm, r = 10 mm, h = 360 mm$$

    Therefore,

    $$V = \dfrac{(3 \times 360)}{3}[20^2 + 20 \times 10 + 10^2]$$

         $$=$$ $$360[400 + 200 + 100]$$

         $$=$$ $$360[700]$$

         $$=$$ $$252,000 \ mm$$ $$^3$$

  • Question 9
    1 / -0

    The volume of a frustum cone is 4,200 $$cm^3$$, whose base and upper area of a circle is 40 and 10 $$cm^2$$. Find the height of the cone.

    Solution

    Volume of a frustum cone = $$\frac{1}{3} (A_1 + A_2 + \sqrt{A_1 A_2 }) h$$

    4,200 = $$\frac{1}{3} (40 + 10 + \sqrt{40 \times 10}) \times h$$

    4,200 = $$\frac{1}{3} (50 + \sqrt{400}) \times h$$

    4,200 = $$\frac{1}{3} (50+20) \times h$$

    $$4,200 \times 3$$ = $$70 \times h$$

    h = 4,200 $$\times$$ 3/70

    h = 180 cm

  • Question 10
    1 / -0
    The volume of a frustum cone is 2,700 $$in^3$$, whose base and upper area of a circle is 20 and 5 $$in^2$$. Find the height of the cone.
    Solution

    Volume of a frustum cone = $$\frac{1}{3} (A_1 + A_2 + \sqrt{A_1 A_2 }) h$$

    2,700 = $$\frac{1}{3} (20 + 5 + \sqrt{20 \times 5}) \times h$$

    2,700 = $$\frac{1}{3} (25 + \sqrt{100}) \times h$$

    2,700 = $$\frac{1}{3} (25+10) \times h$$

    $$2,700 \times 3 = 35 \times h$$

    $$h = \frac{8,100}{35}$$

    $$h = 231.42\, in$$

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now