Self Studies

Surface Areas and Volumes Test - 28

Result Self Studies

Surface Areas and Volumes Test - 28
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The volume of a frustum cone is 560 $$m^3$$, whose base and upper area of a circle is 90 and 10 $$m^2$$. Find the height of the cone.
    Solution

    Volume of a frustum cone = $$\frac{1}{3} (A_1 + A_2 + \sqrt{A_1 A_2 }) h$$

    560 = $$\frac{1}{3} (90 + 10 + \sqrt{40 \times 10}) \times h$$

    560 = $$\frac{1}{3} (50 + \sqrt{400}) \times h$$

    560 = $$\frac{1}{3} (50+20) \times h$$

    $$560 \times 3$$ = $$70 \times h$$

    h = 1,680/70 = 24$$cm$$

  • Question 2
    1 / -0
    Calculate the volume of a frustum cone given below: (Use = 3.14) 

    Solution
    Volume of the frustum cone is $$V = \displaystyle{\frac{\pi h}{3}}(R^2 + Rr + r^2)$$

    R = 10 m, r = 0.2 m, h = 6 m

    $$V = (3.14 \times 6)/(3)[10^2 + 10 \times 0.2 + 0.2^2]$$

         $$= 3.14 x 2[100 + 2 + 0.04]$$

         $$= 6.28[102.04]$$

         $$= 640.8112\, m^3$$

  • Question 3
    1 / -0
    The base and top radius of a cone is 14 m and 8 m respectively. The height of the cone is 123 m. What is the volume of frustum of a cone? (Use $$\pi$$ = 3.14).
    Solution
    Volume of the frustum cone V = $$\displaystyle{\frac{\pi h}{3}}(R^2 + Rr + r^2)$$ 
    $$R = 14 m, r = 8 m, h = 123 m$$
    $$V = (3.14 \times 123)/(3)[14^2 + 14 \times 8 + 8^2] $$
        $$= 3.14 \times 41[196 + 112 + 64]$$
        $$= 128.74[372]$$
        $$= 47,891.28 m^3$$
  • Question 4
    1 / -0
    The base and top diameter of a cone is 0.5 m and 0.1 m respectively. The height of the cone is 12 m. What is the volume of frustum of a cone? (Use $$\pi$$ = 3). 
    Solution
    Volume of the frustum cone is $$V = \displaystyle{\frac{\pi h}{3}}(R^2 + Rr + r^2)$$ 

    D = 0.5 m, d = 0.1 m, h = 4 m

    Diameter = radius/2

    Radius = 2 $$\times$$ diameter

    Therefore, R = 1 m, r = 0.2 m

    $$V = (3 \times 12)/(3)[1^2 + 1 \times 0.2 + 0.2^2]$$

         $$= 12[1 + 0.2 + 0.04]$$

         $$=$$ 12[1.24]

         $$=$$ 14.88 m$$^3$$

  • Question 5
    1 / -0
    Calculate the volume of a frustum cone given below: (Use $$\pi$$ = 3.14) 

    Solution
    Volume of the frustum cone is $$V =  \displaystyle{\frac{\pi h}{3}}(R^2 + Rr + r^2)$$

    R = 15 cm, r = 1.5 cm, h = 15 cm

    $$V = (3.14 \times 15)/(3)[15^2 + 15 \times 1.5 + 1.5^2]$$

         $$= 3.14 \times 5[225 + 22.5 + 2.25]$$

         $$= 15.7[249.75]$$

         $$= 3,921.075 \,cm^3$$

  • Question 6
    1 / -0

    The volume of a frustum cone is $$210 \pi ft^3$$, whose base and upper area of a circle is 10 and 250 $$ft^2$$. Find the height of the cone. (Use $$\pi$$ = 22/7).

    Solution

    Volume of a frustum cone = $$\frac{1}{3} (A_1 + A_2 + \sqrt{A_1 A_2 }) h$$

    $$210 \pi = \frac{1}{3} (10 + 250 + \sqrt{10 \times 250}) \times h$$

    $$210 \pi  = \frac{1}{3} (260 + \sqrt{2,500}) \times h$$

    $$210 \pi = \frac{1}{3} (260+50) \times h$$

    $$210 \times 22/7 \times 3 = 310 \times h$$

    $$h = \frac{1,980}{310}$$

    $$h =$$ 6.38 ft

  • Question 7
    1 / -0
    The base and top diameter of a cone is 12 cm and 2 cm respectively. The height of the cone is 360 cm. What is the volume of frustum of a cone? (Use $$\pi$$ = 3.14).
  • Question 8
    1 / -0
    The surface area of the frustum cone is given its base radius, R = 12 cm and top radius, r = 10 cm. The height of the cone is 12 cm. Find the slant height of the cone.
    Solution
    Slant height of a cone = $$\sqrt{(R-r)^2 + h^2}$$
    = $$\sqrt{(12-10)^2 + 12^2}$$
    = $$\sqrt{(2)^2 + 144}$$
    = $$\sqrt{148}$$
    = $$2\sqrt{37}$$ cm
  • Question 9
    1 / -0
    Calculate the volume of a frustum cone given in figure: (Use $$\pi$$ = 3.14) where $$D$$ is diameter, $$r$$ is radius, $$h$$ is height.  

    Solution
    Volume of the frustum cone is $$V = \displaystyle{\frac{\pi h}{3}}(R^2 + Rr + r^2)$$

    $$D = 20\ in, r = 10\ in, h = 120\ in$$

    Diameter $$= 2$$ radius

    $$R = 10\ in$$

    $$V = (3.14 \times 120)/(3)[10^2 + 10 \times 10 + 10^2]$$

          $$= 3.14 \times 40[100 + 100 + 100]$$

          $$= 125.6[300]$$ 

          $$= 3,7680\, in^3$$

  • Question 10
    1 / -0
    Calculate the volume of a frustum cone given below: (Use $$\pi$$ = 3.14)

    Solution
    Volume of the frustum cone is $$V = \displaystyle{\frac{\pi h}{3}}(R^2 + Rr + r^2)$$

    D = 10 in, d = 2 in, h = 200 in

    Diameter = radius/2

    R = 20 in, r = 4 in

    $$V = (3.14 \times 200)/(3)[20^2 + 20 \times 4 + 4^2]$$

        $$= 209.333[400 + 80 + 16]$$

        $$= 209.333[496]$$

        $$= 103,829.168\, in^3$$

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now