Self Studies

Surface Areas and Volumes Test - 29

Result Self Studies

Surface Areas and Volumes Test - 29
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Calculate the volume of a frustum cone given below: (Use $$\pi$$  = 3.14)

    Solution
    Volume of the frustum cone is $$V = \displaystyle{\frac{\pi h}{3}}(R^2 + Rr + r^2)$$

    R = 50 mm, r = 5 mm, h = 60 mm

    $$V = (3.14 \times 60)/(3)[50^2 + 15 \times 5 + 5^2]$$

        $$= 3.14 \times 20[2,500 + 75 + 25]$$

        $$= 62.8[2,600]$$

        $$= 163,280\, mm^3$$

  • Question 2
    1 / -0
    Calculate the volume of a frustum cone given below: (Use $$\pi$$ = 3).

    Solution
    Volume of the frustum cone is $$V =  \displaystyle{\frac{\pi h}{3}}(R^2 + Rr + r^2)$$

    R = 15 m, r = 2 m, h = 30 m

    $$V = (3 \times 30)/(3)[15^2 + 15 \times 2 + 2^2]$$

        $$= 30[225 + 30 + 4]$$

        $$= 30[259]$$

        $$= 7,770 \,m^3$$

  • Question 3
    1 / -0
    Calculate the volume of a frustum cone given below: (Use $$\pi$$ = 3.14) 

    Solution
    Volume of the frustum cone is $$V = \displaystyle{\frac{\pi h}{3}}(R^2 + Rr + r^2)$$
    R = 36 ft, d = 12 ft, h = 150 ft
    Diameter = radius/2r = 24 ft
    $$V = (3.14 \times 150)/(3)[36^2 + 36 \times 24 + 24^2]$$
    $$= 3.14 \times 50[1,296 + 864 + 576]$$
    $$= 157[2,736]$$
    $$= 429,552\, ft^3$$
  • Question 4
    1 / -0

    The surface area of the frustum cone is given its base radius, R = 12 m and top radius, r = 9 m. The height of the cone is 4 m. Find the slant height of the cone.

    Solution
    Slant height of a cone = $$\sqrt{(R-r)^2 + h^2}$$
    = $$\sqrt{(12-9)^2 + 4^2}$$
    = $$\sqrt{(3)^2 + 16}$$
    = $$\sqrt{9 + 16}$$
    = $$\sqrt{25}$$ cm
    = 5 cm
  • Question 5
    1 / -0
    The surface area of the frustum cone is given its base radius, R = 4 cm and top radius, r = 2 cm. The height of the cone is 4 cm. Find the slant height of the cone.
    Solution
    Slant height of a cone = $$\sqrt{(R-r)^2 + h^2}$$
    = $$\sqrt{(4-2)^2 + 4^2}$$
    = $$\sqrt{(2)^2 + 16}$$
    = $$\sqrt{20}$$
    = $$2\sqrt{5}$$ cm
  • Question 6
    1 / -0

    The surface area of the frustum cone is given its base radius, R = 6 cm and top radius, r = 3 cm. The height of the cone is 4 cm. Find the slant height of the cone.

    Solution
    Slant height of a cone = $$\sqrt{(R-r)^2 + h^2}$$
    = $$\sqrt{(6-3)^2 + 4^2}$$
    = $$\sqrt{(3)^2 + 16}$$
    = $$\sqrt{9 + 16}$$
    = $$\sqrt{25}$$ cm
    = 5 cm
  • Question 7
    1 / -0
    Calculate the volume of a frustum cone given below: (Use $$\pi$$ = 3.14) 

    Solution
    Volume of frustum  $$=\dfrac { 1 }{ 3 } \pi \left( { R }^{ 2 }+{ r }^{ 2 }+Rr \right) \times h$$

                                    $$=\dfrac { 1 }{ 3 } \times 3.14\left( { \left( 2.5 \right)  }^{ 2 }+{ 2 }^{ 2 }+2.5\times 2 \right) \times 180$$

                                     $$=188.40(6.25+4+5)$$

                                     $$=188.40\times 15.25=2873.10{ m }^{ 3 }$$
  • Question 8
    1 / -0
    The volume of the frustum of a cone is 7,740 cm$$^3$$. The bottom and top radius are 14 cm and 7 cm. Find its height. (Use $$\pi$$ = 22/7). Round off your answer to nearest whole number. 

    Solution
    Volume of the frustum cone is V = $$\displaystyle{\frac{\pi h}{3}}(R^2 + Rr + r^2)$$

    $$R = 14 cm, r = 7 cm, h = ?$$

    $$Volume = 7,740 cm$$$$^3$$     

    $$7,740 = (22 \times /' h)/(7 \times 3)[14^2 + 14 \times 7 + 7^2]$$

    $$7,740 \times 21= 22 \times h[196 + 98 + 49]$$

    $$\frac{162,540}{22} = h[343]$$

    $$\frac{7,388.18182}{343} = h$$

    $$h = 22 cm$$

  • Question 9
    1 / -0
    The surface area of the frustum cone is given its base radius, R = 18 m and top radius, r = 9 m. The height of the cone is 12 m. Find the slant height of the cone.
    Solution
    Slant height of a cone = $$\sqrt{(R-r)^2 + h^2}$$
    = $$\sqrt{(18-9)^2 + 12^2}$$
    = $$\sqrt{(9)^2 + 144}$$
    = $$\sqrt{81 + 144}$$
    = $$\sqrt{225}$$ cm
    = 15 cm
  • Question 10
    1 / -0
    Find the curved surface area of frustum cone radii 3 and 9 cm and a slant height 12 cm.
    Solution

    Curved surface area = $$\pi$$(R + r)s

    = $$\pi (9 + 3) \times 12$$

    = $$\pi (12) \times 12$$

    = 144 $$\pi cm^2$$

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now