Self Studies

Surface Areas and Volumes Test - 31

Result Self Studies

Surface Areas and Volumes Test - 31
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The height of the frustum cone is 30 cm. The area of the top and bottom circle of the cone is 6 cm$$^2$$ and 96 cm$$^2$$ respectively. Find its volume.
    Solution
    Volume of the frustum cone is V = $$\displaystyle{\frac{h}{3}}[\pi R^2 + \pi r^2 + \sqrt{(\pi R^2)(\pi r^2)}$$]

    Area of the top cone = 6 cm$$^2$$

    Area of the bottom cone = 96 cm$$^2$$

    Height = 30 cm

    Volume = $$\displaystyle{\frac{30}{3}}[96 + 6 + \sqrt{96x6}]$$ 
    $$= 10[102 + \sqrt{576}]$$

    $$= 10[102 + 24]$$

    $$= 10 \times 126$$

    $$=$$ 1,260 cm$$^3$$

  • Question 2
    1 / -0
    The height of the frustum cone is 210 m. The area of the top and bottom circle of the cone is 10 m$$^2$$ and 250 m$$^2$$ respectively. Find its volume. 

    Solution
    Volume of the frustum cone is V = $$\displaystyle{\frac{h}{3}}[\pi R^2 + \pi r^2 + \sqrt{(\pi R^2)(\pi r^2)}$$]

    Area of the top cone = 10 m$$^2$$

    Area of the bottom cone = 250 m$$^2$$

    Height = 210 m

    Volume = $$\displaystyle{\frac{210}{3}}$$

    = 70[260 + $$\sqrt{2500}$$]

    = 70[260 + 50]

    = 70 x 310

    = 21,700 m$$^3$$

  • Question 3
    1 / -0
    The volume of the frustum of a cone is 54 cm$$^3$$ and its height is 6 cm, bottom radius, R = 1 cm. Find its top radius, r. (Use $$\pi$$ = 3). 
    Solution
    Volume of the frustum cone is $$V = \displaystyle{\frac{\pi h}{3}}(R^2 + Rr + r^2)$$

    Radius, R = 1 cm, r = ?, h = 6 cm

    Volume = 54 cm$$^3$$

    $$54 = (3 \times 6 )/(3)[1^2 + 1 \times r + r^2]$$

    $$54 = 6[1 + r + r^2]$$

    $$9 = 1 + r + r^2$$

    $$r^2 + r - 8 = 0$$

    On factoring neglect the negative value of r, we get

    r = 2 cm

  • Question 4
    1 / -0
    The curved surface area of frustum cone is 400 $$m^2$$ The diameter of a cone is 0.5 and 2 m. Find the slant height. (Use $$\pi$$ = 3.14).
    Solution

    Curved surface area = $$\pi$$(R + r)s

    Diameter = radius $$\times 2$$

    Radius, R = 0.25 m, r = 1 m

    400 = $$3.14 \times (0.25 + 1) \times s$$

    400 = $$3.14 \times (1.25) \times s$$

    400 = 3.925 $$\times s$$

    S = 400/3.925

    Slant Height = 101.91 m

  • Question 5
    1 / -0
    Find the curved surface area of frustum cone radii 0.2 and 3.2 cm and a slant height 5 cm. (Use $$\pi$$ = 3.14).
    Solution

    Curved surface area = $$\pi(R + r)s$$

    = $$\pi (3.2 + 0.2) \times 5$$

    = $$3.14 \times (3.4) \times 5$$

    = $$3.14 \times 17$$

    = 53.38 $$ cm^2$$

  • Question 6
    1 / -0
    Find the curved surface area of frustum cone radii 0.5 and 5.2 m and a slant height 10 m. (Use $$\pi$$  = 3.14).
    Solution

    Curved surface area = $$\pi$$(R + r)s

    = $$\pi (0.5 + 5.2) \times 10$$

    = $$\pi (5.7) \times 10$$

    = $$3.14 \times (5.7)$$

    = 178.98 $$m^2$$

  • Question 7
    1 / -0
    The volume of the frustum of a cone is $$600 m$$$$^3$$ and its height is $$12 m$$, bottom radius, $$R = 2 m$$. Find its top radius, $$r$$. (Use $$\pi$$ = 3.14). 
    Solution
    Volume of frustum  $$=\dfrac { 1 }{ 3 } \pi \left( { R }^{ 2 }+{ r }^{ 2 }+Rr \right) \times h$$
    $$\Rightarrow \quad 600{ m }^{ 3 }=\dfrac { 1 }{ 3 } \times 3.14\left( { 2 }^{ 2 }+{ r }^{ 2 }+2r \right) \times 12$$
    $$\Rightarrow \quad { r }^{ 2 }+2r+4=48\Rightarrow { r }^{ 2 }+2r-44=0\Rightarrow r=\left( -1\pm 3\sqrt { 5 }  \right) $$
    $$\Rightarrow \quad r=\quad -1-3\sqrt { 5 } ,\quad -1+3\sqrt { 5 } $$
    Neglecting negative value, $$\therefore \quad r=-1+3\sqrt { 5 } =6.70-1=5.7m$$
  • Question 8
    1 / -0
    The volume of frustum of a cone is 600 m$$^3$$. The area of the bottom circle of the cone is 10 m$$^2$$ and the area of the top circle of the cone is 10 m$$^2$$. Find its height.

    Solution
    Volume of the frustum cone is V = $$\displaystyle{\frac{h}{3}}[A_1 + A_2 + \sqrt{A_1 A_2}$$]

    Area of the bottom cone, A$$_1$$ = 10 m$$^2$$

    Area of the top cone, A$$_2$$ = 10 m$$^2$$

    Height = ?

    Volume = 600 m$$^3$$

    $$600 = h/3[10 + 10 + \sqrt{10 \times 10}]$$

    $$600 \times 3 = h[20 + \sqrt{100}]$$

    $$1,800 = h[20 + 10]$$

    $$1,800/30 = h$$

    $$h = 60 m$$
  • Question 9
    1 / -0
    The volume of frustum of a cone is 3,600 cm$$^3$$. The area of the bottom circle of the cone is 4 cm$$^2$$ and the area of the top circle of the cone is 16 cm$$^2$$. Find its height.

    Solution
    Volume of the frustum cone is V = $$\displaystyle{\frac{h}{3}}[A_1 + A_2 + \sqrt{A_1 A_2}$$]

    Area of the bottom cone, $$A_1 = 4 \,cm^2$$

    Area of the top cone, $$A_2 = 16\, cm^2$$

    Height = ?

    Volume = 3,600 cm

    $$3,600 = h/3[4 + 16 + \sqrt{4 \times 16}]$$

    $$3,600 \times 3 = h[20 + \sqrt{64}]$$

    $$10,800 = h[20 + 8]$$

    $$10,800/28 = h$$

    $$h = 385.7 cm$$

  • Question 10
    1 / -0

    The curved surface area of frustum cone is $$303.3$$ $$in^2$$. The diameter of a top cone is $$0.5$$ and the radius of the bottom cone is $$0.2$$ in. Find the slant height. (Use $$\pi$$ = 3.14).

    Solution

    Curved surface area = $$\pi(R + r)s$$

    Diameter $$=$$ radius $$\times 2$$

    Radius, R $$= 0.25$$ in, r $$= 0.2$$ in

    $$\Rightarrow 303.3 =$$ $$3.14 \times (0.25 + 0.2) \times s$$

    $$\Rightarrow 303.3 =$$ $$3.14 \times (0.45) \times s$$

    $$\Rightarrow \dfrac {303.3}{3.14} \times 0.45$$ $$= s$$

    Slant Height $$=s= 214.64$$ in

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now