Self Studies

Surface Areas and Volumes Test - 32

Result Self Studies

Surface Areas and Volumes Test - 32
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The height of the frustum cone is 60 cm. The area of the top and bottom circle of the cone is 10 cm$$^2$$ and 10 cm$$^2$$ respectively. Find its volume.

    Solution
    Volume of the frustum cone is V = $$\displaystyle{\frac{h}{3}}[\pi R^2 + \pi r^2 + \sqrt{(\pi R^2)(\pi r^2)}$$]

    Area of the top cone = 10 cm$$^2$$

    Area of the bottom cone = 10 cm$$^2$$

    Height = 60 cm

    Volume = $$\displaystyle{\frac{60}{3}}[10 + 10 + \sqrt{10*10}$$ ]

    $$= 20[20 + \sqrt{100}]$$

    $$= 20[20 + 10]$$

    $$= 20 \times 30$$

    $$= 600 \,cm^3$$

  • Question 2
    1 / -0
    The volume of frustum of a cone is 300 m$$^3$$. The area of the bottom circle of the cone is 90 m$$^2$$ and the area of the top circle of the cone is 90 m$$^2$$. Find its height. 

    Solution
    Volume of the frustum cone is V = $$\displaystyle{\frac{h}{3}}[A_1 + A_2 + \sqrt{A_1 A_2}$$]

    Area of the bottom cone, A$$_1$$ = 90 m$$^2$$

    Area of the top cone, A$$_2$$ = 10 m$$^2$$

    Height = ?

    Volume = 300 m$$^3$$

    $$300 = h/3[90 + 10 + \sqrt{90 \times 10}]$$

    $$300 \times 3 = h[100 + \sqrt{900}]$$

    $$900 = h[100 + 30]$$

    $$\frac{900}{130} = h$$

    $$h = 6.9 m$$

  • Question 3
    1 / -0
    The volume of frustum of a cone is 270.15 mm$$^3$$. The area of the bottom circle of the cone is 20 mm$$^2$$ and the area of the top circle of the cone is 5 mm$$^2$$. Find its height. 

    Solution
    Volume of the frustum cone is V = $$\displaystyle{\frac{h}{3}}[A_1 + A_2 + \sqrt{A_1 A_2}$$]

    Area of the bottom cone, A$$_1$$ = 20 mm$$^2$$

    Area of the top cone, A$$_2$$ = 5 mm$$^2$$

    Height = ?

    Volume = 270.15 mm$$^3$$

    $$270.15 = h/3[20 + 5 + \sqrt{20 \times 5}]$$

    $$270.15 \times 3 = h[25 + \sqrt{10}]$$

    $$810.45 = h[25 + 10]$$

    $$\frac{810.45}{35} = h$$

    $$h = 23.15 mm$$

  • Question 4
    1 / -0
    The height of the frustum cone is 270 ft. The area of the top and bottom circle of the cone is 8 ft$$^2$$ and 32 ft$$^2$$ respectively. Find its volume. 
    Solution
    Volume of the frustum cone is V = $$\displaystyle{\frac{h}{3}}[\pi R^2 + \pi r^2 + \sqrt{(\pi R^2)(\pi r^2)}$$]

    Area of the top cone = 8 ft$$^2$$

    Area of the bottom cone = 32 ft$$^2$$

    Height = 270 ft

    Volume = $$\displaystyle{\frac{270}{3}}[8 + 32 + \sqrt{8 \times 32 }$$]

    $$= 90[40 + \sqrt{256}]$$

    $$= 90[100 + 16]$$

    $$= 90 \times 116$$

    $$= 10,440 ft^3$$

  • Question 5
    1 / -0
    The height of the frustum cone is 1,500 ft. The area of the top and bottom circle of the cone is 20 ft$$^2$$ and 80 ft$$^2$$ respectively. Find its volume. 

    Solution
    Volume of the frustum cone is V = $$\displaystyle{\frac{h}{3}}[\pi R^2 + \pi r^2 + \pi R r$$]

    Area of the top cone = 20 ft$$^2$$

    Area of the bottom cone = 80 ft$$^2$$

    Height = 1,200 ft

    Volume = $$\displaystyle{\frac{1200}{3}}[20 + 80 + \sqrt{20 * 80}$$

    $$= 400[100 + \sqrt{1600}]$$

    $$= 400[100 + 40]$$

    $$= 400\times 140$$

    $$= 56,000$$ ft$$^3$$

  • Question 6
    1 / -0

    The curved surface area of frustum cone is 1,200 cm. The diameter of a cone is 50 and 12 cm.  Find the slant height. (Use $$\pi$$ = 3).

    Solution

    Curved surface area = $$\pi$$(R + r)s

    Diameter = radius $$\times 2$$

    Radius, R = 25 cm, r = 6 cm

    1,200 = $$3 \times (25 + 6) \times s$$

    1,200 = $$3 \times (31) \times s$$

    1,200/93 = s

    Slant Height = 12.90 cm

  • Question 7
    1 / -0
    The volume of frustum of a cone is 180.27 ft$$^3$$. The area of the bottom circle of the cone is 27 ft$$^2$$ and the area of the top circle of the cone is 12 ft$$^2$$. Find its height. 

    Solution
    Volume of the frustum cone is V = $$\displaystyle{\frac{h}{3}}[A_1 + A_2 + \sqrt{A_1 A_2}$$]

    Area of the bottom cone, A$$_1$$ = 27 ft$$^2$$

    Area of the top cone, A$$_2$$ = 12 ft$$^2$$

    Height = ?

    Volume = 180.27 ft$$^3$$

    $$180.27 = h/3[27 + 12 + \sqrt{37 \times 12}]$$

    $$180.27 \times  3 = h[39 +\sqrt{324}]$$

    $$540.81 = h[39 + 18]$$

    $$\frac{540.81}{57} = h$$

    $$h = 9.48 ft$$

  • Question 8
    1 / -0
    Calculate the total surface area of a frustum of cone whose upper base radius is 6 m and lower base radius is 5 m and its height is 1 m. (Use $$\pi$$ = 3).
    Solution
    Total surface area, SA =π (r + R)$$\sqrt{(R - r)^2 + h^2} + \pi r^2 + \pi R^2 $$

    R = 6 m, r = 5 m, h = 1 m

    $$= 3 \times (5 + 6) \sqrt{(6 - 5)^2 + 1^2} + 3 * 5^2 + 3 \times 6^2$$

    $$= 3 \times (11) \sqrt{(1)^2 + 1^2} + 3 \times 25 + 3 \times 36$$

    $$= 33 \sqrt{1 + 1} + 75 + 108$$

    $$= 33\times \sqrt {2} + 183$$

    $$= 229.662\, m^2$$
  • Question 9
    1 / -0
    Calculate the total surface area of a frustum of cone whose upper base radius is 4 cm and lower base radius is 1 cm and its height is 4 cm. (Use $$\pi$$ = 3). 
    Solution
    Total surface area, SA =π (r + R)$$\sqrt{(R - r)^2 + h^2} + \pi r^2 + \pi R^2 $$

    R = 4 cm, r = 1 cm, h = 4 cm

    $$= 3 \times (1 + 4) \sqrt{(4 - 1)^2 + 4^2} + 3 \times 1^2 + 3 \times 4^2$$

    $$= 3 \times  (5) \sqrt{(3)^2 + 4^2} + 3 + 3 \times 16$$

    $$= 15 \sqrt{9 + 16} + 3 + 48$$

    $$= 15 \times \sqrt{25} + 51$$

    $$= 15 \times 5 + 51$$

    $$= 126\, cm^2$$

  • Question 10
    1 / -0
    Calculate the total surface area of a frustum of cone whose upper base radius is 15 m and lower base radius is 5 m and its height is 15 m. (Use $$\pi$$ = 3). 
    Solution
    Total surface area, SA =π (r + R)$$\sqrt{(R - r)^2 + h^2} + \pi r^2 + \pi R^2 $$

    R = 15m, r = 5m, h = 15m

    $$= 3 \times (5 + 15) \sqrt{(15 - 5)^2 + 15^2}  + 3 \times 5 + 3 \times 15^2$$

    $$= 3 \times (20)\sqrt{(10)^2 + 15^2} + 3 \times 25 + 3 \times 225$$

    $$= 60\sqrt{100 + 225} + 75 + 675$$

    $$= 60 \times \sqrt{325} + 750$$

    $$= 1,831.66\, m^2$$

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now