Self Studies

Surface Areas and Volumes Test - 39

Result Self Studies

Surface Areas and Volumes Test - 39
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Calculate the curved surface area of a frustum cone given below :

    Solution

    Given, $$r=5$$ m, $$R=15$$ m, $$l=17$$ m

    We know curved surface area $$=$$ $$ \pi (R + r) l $$

    $$=$$ $$\pi (15 + 5) \times 17$$

    $$=$$ $$3.14 \times 20 \times 17$$

    $$=1067.6$$ sq. m

  • Question 2
    1 / -0
    Calculate the curved surface area of a frustum cone given below :

    Solution

    Curved surface area = $$ \pi (R + r) \sqrt{(R-r)^2 + h^2} $$

    = $$\pi (15 + 10) \sqrt{ (15 - 10)^2 + 12^2} $$

    = $$3.14 \times 25 \times \sqrt{25 + 144}$$

    = $$3.14 \times 25 \times 13$$

    = 1,020.5 $${cm}^2$$

  • Question 3
    1 / -0
    A vessel is in the form of a frustum of a cone. Its radius at top end is 8 cm and the bottom end is 12 cm. Its height is 21 cm. Find the volume of the frustum cone.
    Solution

    Volume = $$\displaystyle \frac{\pi h}{3} (R^2 + Rr + r^2)$$

    = $$\displaystyle  \frac{\pi \times 21}{3} ({12}^2 + 12 \times 8 + 8^2)$$

    = $$7 \pi (144 + 96 + 64)$$

    = $$7 \pi (304)$$

    = $$2,128 cm^3$$

  • Question 4
    1 / -0

    Calculate the total surface area of a frustum cone:

    Given D = 1 cm, d = 0.1 cm, h = 5 cm.

    Solution
    Total surface area = $$\pi (R+ r) \sqrt{(R-r)^2 + h^2} + \pi R^2 + \pi r^2$$
    Diameter = radius $$\times 2$$
    R = 0.5 cm, r = 0.05 cm
    = $$3.14 (0.5 + 0.05) \sqrt{(0.5 - 0.05)^2 + 5^2} + \pi {0.5}^2 + \pi {0.05}^2$$
    = $$3.14 \times (0.550) \times 5.020 + 0.25 \times 3.14 + 0.0025 \times 3.14$$
    = $$3.14 [2.761 + 0.785 + 0.00785]$$
    = $$11.159 {cm}^2$$
  • Question 5
    1 / -0

    Calculate the curved surface area of a frustum cone:

    Given D = 12 cm, d = 5 cm, s = 23 cm.

    Solution
    Curved surface area = $$\pi (R+ r)s$$
    Diameter = radius $$\times 2$$
    R = 6 cm, r = 2.5 cm
    = $$\pi (6 + 2.5) \times 23$$
    = $$3.14 \times 8.5 \times 23$$
    = $$613.87 {cm}^2$$
  • Question 6
    1 / -0
    Calculate the total surface area of frustum cone given below:

    Solution
    Total surface area = $$\pi (R+r)s + \pi R^2 + \pi r^2$$

    $$= \pi (0.2+ 0.1)20 + \pi 0.2^2 + \pi 0.1^2$$

    $$= 6 \pi + 0.04\pi  + 0.01 \pi $$

    = $$6.05 \pi m^2$$

  • Question 7
    1 / -0
    Calculate the curved surface area of a frustum cone given below :

    Solution

    Curved surface area = $$ \pi (R + r) \sqrt{(R-r)^2 + h^2} $$

    = $$\pi (5 + 0.1) \sqrt{ (5 - 0.1)^2 + 10^2} $$

    = $$3.14 \times 5.1 \times \sqrt{24.01 + 100}$$

    = $$3.14 \times 5.1 \times 11.13$$

    = 178.23 $${m}^2$$

  • Question 8
    1 / -0

    A vessel is in the form of a frustum of a cone. Its radius at top end is 12 m and the bottom end is 10 m. Its volume is 369 $$ \pi m^3$$.  Find its height.

    Solution

    Volume of a frustum cone = $$ \displaystyle \frac{\pi h}{3} (R^2 + Rr + r^2)$$

    $$369 \pi$$$$= \displaystyle \frac{\pi \times h}{3} ({12}^2 + 12 \times 10 + {10}^2)$$

    $$369 \times 3$$ = $$h(144 + 120 + 100)$$

    $$1,107 = h (364)$$

    h = 3.04 m
  • Question 9
    1 / -0
    The curved surface area of a frustum cone is 240 cm$$^2$$. The larger circle area is 50 cm$$^2$$. The total surface area is 750 cm$$^2$$. Find the smaller circle area of a cone. 
    Solution
    Curved surface area of a frustum cone = $$\pi$$(r + R)s $$\Rightarrow$$ 240 cm$$^2$$
    Total surface area of a frustum of cone = $$\pi$$(r + R)s +$$\pi$$r$$^2$$ + $$\pi$$R$$^2$$ $$\Rightarrow$$ 750 cm$$^2$$

    Larger circle area = $$\pi$$R$$^2$$ $$\Rightarrow$$ 50 cm$$^2$$

    Smaller circle area = $$\pi$$r$$^2$$ $$\Rightarrow$$ ?

    Therefore,

    SA = $$\pi$$(r + R)s +$$\pi$$r$$^2$$ + $$\pi$$R$$^2$$

    $$750 = 240 + $$Area of smaller circle + 50 

    $$750 - 240 - 50$$ = Area of smaller circle

    Area of smaller circle of a frustum cone = 460 cm$$^2$$

  • Question 10
    1 / -0
    The total surface area of a frustum cone is 311.56 m$$^2$$. The area of larger and smaller circle is 12 and 8.4 m$$^2$$. Find the curved surface area of a cone. 
    Solution

    Curved surface area of a frustum cone = $$\pi$$(r + R)s $$\Rightarrow$$  ?

    Total surface area of a frustum of cone = $$\pi$$(r + R)s+ $$\pi$$r$$^2$$ + $$\pi$$R$$^2$$ $$\Rightarrow$$  311.56 m$$^2$$

    Smaller circle area = $$\pi$$r$$^2$$ $$\Rightarrow$$  8.4 m$$^2$$

    Larger circle area = $$\pi$$R$$^2$$ => 12 m$$^2$$

    Therefore,

    SA = $$\pi$$(r + R)s +$$\pi$$r$$^2$$ + $$\pi$$R$$^2$$

    311.56 = Curved surface area + 8.4 + 12

    $$311.56 - 8.4 - 12 = $$Curved surface area 

    Curved surface area of a frustum cone = 291.16 m$$^2$$

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now