Self Studies

Surface Areas and Volumes Test - 41

Result Self Studies

Surface Areas and Volumes Test - 41
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    A material handing bucket is in the shape of the frustum of a right circular cone. The small radius is $$5$$ cm and the large radius is $$10$$ cm. The height of the frustum cone is $$20$$ cm. Find the volume and the total surface area of the bucket.
    Solution
    Volume of the frustum cone = $$\displaystyle \frac{\pi h}{3} [R^2 + Rr + r^2] $$
    $$= \displaystyle \frac{\pi \times 20}{3} [{10}^2 + 10 \times 5 + 5^2] $$
    $$=\displaystyle \frac{3.14\times 20}{3}[100+50+25]$$
    = $$3,663.33 \,cm^3$$

    Total surface area 
    $$=\displaystyle \pi (R+r)l+\pi R^2+\pi r^2$$
    Slant height, $$l = \sqrt{h^2 +r^2} \Rightarrow \sqrt{20^2 + 5^2} \Rightarrow \sqrt{400 +25}$$
    $$l = 20.61 cm$$
    $$ \therefore TSA = 3.14 (10 + 5) 20.61 + 3.14 \times 10^2 + 3.14 \times 5^2$$
                  $$ = 3.14 [309.15 + 100 + 25]$$
                  $$= 1,313.231 \,cm^2$$
    $$ \therefore Volume = 3,663.33 cm^3$$
    $$ TSA = 1,363.231 cm^3$$
  • Question 2
    1 / -0
    Find the curved surface area of a frustum cone whose larger and smaller radius is 4.5 and 2.4 ft. The slant height is 12.5 ft. (Use $$\pi$$ = 3) 
    Solution

    Curved surface area of a frustum cone = $$\pi$$(r + R)s $$\Rightarrow$$  ?

    = 3 $$\times$$ (2.4 + 4.5) $$\times$$ 12.5

    = 3 $$\times$$ (6.9) $$\times$$ 12.5

    Curved surface area of a frustum cone = 258.75 ft$$^2$$

  • Question 3
    1 / -0
    The total surface area of a frustum cone is 3,250 cm$$^2$$. The area of larger and smaller circle is 48 and 36 cm$$^2$$. Find the curved surface area of a cone.
    Solution

    Curved surface area of a frustum cone = $$\pi$$(r + R)s $$\Rightarrow$$  ?

    Total surface area of a frustum of cone = $$\pi$$(r + R)s + $$\pi$$r$$^2$$ + $$\pi$$R$$^2$$ $$\Rightarrow$$  3,250 cm$$^2$$

    Smaller circle area = $$\pi$$r$$^2$$ $$\Rightarrow$$  36 cm$$^2$$

    Larger circle area = $$\pi$$R$$^2$$ $$\Rightarrow$$  48 cm$$^2$$

    Therefore,
    SA = $$\pi$$(r + R)s + $$\pi$$r$$^2$$ + $$\pi$$R$$^2$$

    3,250 = Curved surface area + 36 + 48

    $$3,250 - 36 - 48 = $$Curved surface area

    Curved surface area of a frustum cone = 3,166 cm$$^2$$

  • Question 4
    1 / -0
    The shape of the wooden block is of the form of frustum of a cone. Determine the volume of a frustum of a cone if the diameters of the ends are 15 cm and 3 cm and its perpendicular height is 18 cm.
    Solution

    Volume of a frustum cone = $$ \displaystyle \frac{\pi h}{3} (R^2 + Rr + r^2) $$

    Diameter = radius $$\times 2$$

    Radius, R = 7.5 cm, r = 1.5 cm

    $$=\displaystyle \frac{\pi\times 18}{3}(7.5^2+7.5\times 1.5+1.5^2)$$

    $$= 6 \pi (56.25 + 11.25 + 2.25 )$$

    $$=6 \pi \times 69.75$$

    $$=418.5 \pi cm^3$$

  • Question 5
    1 / -0
    A bouquet is in the shape of a frustum of a cone of height 15 cm. The radii of its two circular ends are 4 cm and 2 cm. Find the volume of the bouquet.
    Solution

    Volume of a frustum cone = $$ \displaystyle \frac{\pi h}{3} (R^2 + Rr + r^2) $$

    $$=\displaystyle \frac{\pi \times 15}{3} (4^2 + 4 \times 2 + 2^2)$$

    $$= 5 \pi (16 + 8 + 4 )$$

    $$= 5 \pi \times 28$$

    $$= 140 \times 3.14$$

    = $$439.6 cm^3$$

  • Question 6
    1 / -0

    A loudspeaker diaphragm is in the form of a frustum of a cone. The slant height is $$30\ cm$$. The curved surface area is $$3600\ cm^2$$. The base diameter is $$5\ cm$$. Find the top diameter of the loud speaker.

    Solution

    Curved surface area  $$= \pi (R + r) l$$

    Diameter $$=r\times 2$$

    Radius, $$r = 2.5\ cm, l = 30 cm. CSA = 3600\ cm^2$$

    $$3600 = \pi (R + 2.5) \times 30$$

    $$\dfrac{3600}{30} = 3.14R + 3.14 \times 2.5$$

    $$\dfrac{112.15}{3.14} = R$$

    $$R = 35.71\ cm$$

    Bottom diameter$$, D = 56.42\ cm$$

  • Question 7
    1 / -0
    The shape of the wooden block is of the form of frustum of a cone. Determine the height of a frustum of a cone if the radii of the ends are 23 m and 4 m and its volume is 2,400 $$m^3$$.
    Solution

    Volume of a frustum cone = $$ \displaystyle \frac{\pi h}{3} (R^2 + Rr + r^2) $$

    R = 23 m, r = 4 cm, Volume = 2,400 $$m^3$$

    $$2,400 =\displaystyle \frac{\pi \times h}{3} (23^2 + 23 \times 4 + 4^2)$$

    $$7200= \pi h (529 + 92 + 16 )$$

    $$7200/637 \pi = h$$

    h = $$3.5 m$$

  • Question 8
    1 / -0
    A metallic solid of volume 5 $$m^3$$ is melted and drawn into the form of a wire of radius 12 m. Find the length of the wire.
    Solution
    Let the length of the wire be $$x$$ m
    $$\therefore$$ The wire is of the shape of the right circular cylinder.
    $$\therefore$$ Volume of the cylinder $$= \pi r^2 h$$
    $$5 = \pi \times 12 \times 12 \times x$$
    $$\displaystyle 5 = \frac{22}{7} \times 12 \times 12 \times x$$
    $$\displaystyle \frac{5 \times 7}{22 \times 12 \times 12} = x$$
    The length of the wire is $$0.011$$ m
  • Question 9
    1 / -0

    A tent of height 16 m is in the form of right circular cylinder with radius of base 2 m and height 6 m, surmounted by a right circular cone of the same base. Find the cost of the canvas of the tent at the rate of Rs. 100 per m.

    Solution

    Radius of the cylindrical base = 2 m

    Height of the cylindrical portion = 6 m

    Height of the conical portion = 16 - 6 = 10 m

    Slant height = $$\sqrt{h^2 
    + r^2}$$

    = $$\sqrt{10^2 + 2^2}$$

    = $$\sqrt{104}$$

     = 10.19 m

    Surface area = Curved surface area of the cylindrical portion + Curved surface area of the conical portion

    = $$2 \pi rh + \pi r l$$

    = $$2 \times 22/7 \times 2 \times 6 + 22/7 \times 2 \times 10.19$$

    =75.42 + 64.05

    = 139.47 $$m^2$$

    Therefore the cost of the canvas of the tent at the rate of $$Rs. 100 \times 139.47 = Rs. 13,947$$

  • Question 10
    1 / -0
    A hemispherical water bottle of internal diameter 48 cm contains some liquid. This liquid is to be filled into cylindrical shaped bottles each of radius 4 cm and h = 12 cm. Find the number of bottles necessary to empty the water bottle.
    Solution
    Volume of the $$x$$ bottle = Volume of the hemisphere
    $$\pi r^2 h x = 1/2 \times 4/3 \times  \pi R^3$$

    Inner radius R of the bottle $$= 48/2 = 24$$ cm

    $$ \displaystyle x = \frac{2/3 \times 24 \times 24 \times 24}{4 \times 4 \times 12} = \frac{13824}{576} $$

    $$x = 24$$

    $$\therefore$$ Number of bottles $$= 24$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now