Self Studies

Surface Areas and Volumes Test - 42

Result Self Studies

Surface Areas and Volumes Test - 42
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    A table lamp is in the form of a frustum of a cone whose area of the top and bottom circle bases are 212 and 103 $$m^2$$. Find the total surface area, if slant height is 10 m and top and bottom radii are 2 and 4 m ( Use $$\pi$$ = 3)
  • Question 2
    1 / -0
    A solid sphere of radius 6 mm is melted and then cast into small spherical balls each of radius 0.6 mm. Find the number of balls thus obtained.
    Solution
    Let number of small balls be $$x$$
    Therefore Volume of $$ x $$ small balls = volume of sphere
    $$\displaystyle x = \frac{6 \times 6 \times 6}{0.6 \times 0.6 \times 0.6} = \frac{216}{0.216}$$
    $$x = 1000$$
    $$\therefore$$ Number of balls = 1000
  • Question 3
    1 / -0
    Three cubes, whose edges are 12 cm, x cm and 10 cm respectively, are melted and recasted into a single cube of edge 14 cm. Find 'x'.
    Solution
    Edges of three cubes are 12 cm, $$x$$ cm and 10 cm.
    $$\therefore$$ Volume of these cubes are $$12^3 , x^3 $$ and $$10^3$$
    Edge of new cube formed = 14 cm
    $$\therefore$$ Volume of new cube = $$(side)^3 = (14)^3 = 2744$$
    According to the problem,
    $$12^3 + x^3 + 10^3 = 2744$$
    $$1728 + x^3 + 1000 = 2744$$
    $$x^3 = 16 \Rightarrow x = 2.5 cm$$
    $$Hence, the edge of cube = 2.5 cm$$
  • Question 4
    1 / -0

    A water jug is in the shape of a frustum of a cone of height $$21\ cm$$. The radii of its two circular ends are $$12\ cm$$ and $$7\ cm$$. Find the capacity of the water jug. (Use $$\pi$$ = 3).

    Solution

    Volume of a frustum cone  $$= \displaystyle \dfrac{\pi h}{3} (R^2 + Rr + r^2) $$

                                                 $$=\displaystyle \dfrac{3 \times 21}{3} (12^2 + 12 \times 7 + 7^2)$$

                                                 $$= 21(144 + 84 + 49)$$

                                                 $$=21 \times 277$$

                                                 $$=5817 cm^3$$

  • Question 5
    1 / -0
    A solid is in the shape of a cone standing on a hemisphere with both their radii being equal to 21 m and the height of the cone is 10 m. Find the volume of the solid.
    Solution

    Radius of the cone = radius of the hemisphere = 21m

    Height of the cone = 10 m

    Volume of the solid = Volume of the cone + Volume of the hemisphere

    Volume of the cone = $$\displaystyle \frac{1}{3} \pi r^2 h + \frac{2}{3} \pi r^3$$

    $$= \frac{1}{3} \times 22/7 \times 21^2 \times 10 + \frac{2}{3} \times 22/7 \times 21^3$$

    = 4,620 + 19,404

    = 24,024 $$m^3$$

  • Question 6
    1 / -0
    A metallic solid of volume 2200 $$cm^3$$ is melted and drawn into the form of a wire of height 7 cm. Find the radius of the wire.
    Solution
    Assume let the wire is of the shape of the right circular cylinder.
    $$\therefore$$ Volume of the cylinder = $$\pi r^2 h$$
    $$\displaystyle 2200 = \frac{22}{7} \times r^2 \times 7$$
    $$r^2 = 100$$
    $$r = 10 cm$$
    $$\therefore$$ The radius of the wire is 10 cm.
  • Question 7
    1 / -0
    If the radii of the circular ends of a conical water glass are 25 and 12 cm whose height is 45 cm. Find the capacity of the water glass? (Use $$\pi$$ = 3.14)
    Solution

    Volume of a frustum cone = $$ \displaystyle \frac{\pi h}{3} (R^2 + Rr + r^2) $$

    $$=\displaystyle \frac{3.14 \times 45}{3} (25^2 + 25 \times 12 + 12^2)$$

    $$= 47.1 (625 + 300 + 144)$$

    =$$47.1 \times 1069$$

    = $$50349.9 cm^3$$

  • Question 8
    1 / -0
    A solid is in the shape of a cone standing on a hemisphere with both their radii being equal to $$12$$ m and height of the cone is $$5$$ m. Find the volume of the solid. 
    Solution

    The volume of solid $$=$$ volume of cone + volume of a hemisphere 
                             
                                $$=$$ $$\dfrac { 1 }{ 3 } \pi { r }^{ 2 }h+\dfrac { 2 }{ 3 } \pi { r }^{ 3 }$$

                              $$ =$$ $$\dfrac { 1 }{ 3 } \pi { r }^{ 2 }\left( h+2r \right) $$

                              $$ =$$ $$\dfrac { 1 }{ 3 } \times \pi\times 12\times 12(5+2\times 12)$$
                              $$=\dfrac{1}{3}\times \pi \times 144\times (5+24)$$

                              $$ =$$ $$\dfrac{1}{3}\times \pi \times144\times 29=1392\pi~{ m }^{ 3 }$$

  • Question 9
    1 / -0
    A cylindrical powder tin of 15 cm of height and 14 cm of radius is filled with water. The powder tin is emptied to make a conical heap of water on the ground. If the height of the conical heap is 42 cm, what is approximate value of the radius? (Use $$\pi$$ = 3).
    Solution

    Volume of powered tin = Volume of the cone = $$ \pi r^2 h \Rightarrow 3 \times 14 \times 14 \times  15$$

    Volume of conical heap = Volume of the cone = $$\displaystyle \frac{1}{3} \pi r^2 h = \frac{1}{3} \times 3 \times r^2 \times 42$$

    On equating, we get

    $$\displaystyle 3 \times 14 \times 14 \times 15 = \frac{1}{3} \times 3 \times r^2 \times 42$$

    $$26,460/126 = r^2$$

    $$210 = r^2$$

    $$r = 14 cm$$

  • Question 10
    1 / -0
    A brick whose length, breadth and height are $$3$$m, $$6$$m and $$9$$m respectively which are cut into single cuboid. Find the surface area of the cuboid.
    Solution
    Surface area of the cuboid $$= 2(lb + bh + hl)$$
    $$= 2 \times (3 \times 6 + 6 \times 9 + 9 \times 3)$$
    $$= 2 \times (18 + 54 + 27)$$
    $$= 2 \times (99)$$
    $$= 198 m^{2}$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now