Self Studies

Statistics Test - 28

Result Self Studies

Statistics Test - 28
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If mode of a data exceeds its mean by $$12$$, the mode exceeds the median by
    Solution
    We have,
    $$Mode - Mean = 12$$
    $$\therefore\quad Mode = 3Median - 2Mean$$
    $$\Rightarrow \quad Mode - Mean = 3(Median - Mean)$$
    $$\Rightarrow\quad 12 = 3(Median - Mean)$$
    $$\Rightarrow \quad Median - Mean = 4$$

    Again, $$Mode = 3Median - 2Mean$$
    $$\Rightarrow \quad Mode - Median = 2(Median - Mean) = 2\times 4 = 8$$
  • Question 2
    1 / -0
    The median from the following distribution is 
    Class:$$5-10$$$$10-15$$$$15-20$$$$20-25$$$$25-30$$$$30-35$$$$35-40$$$$40-45$$
    Frequency:$$5$$$$6$$$$15$$$$10$$$$5$$$$4$$$$2$$$$2$$
    Solution
     Class Frequency Cumulative Frequency
     $$5-10$$ $$5$$$$ 5$$
    $$ 10-15$$ $$6$$ $$11$$
    $$ 15-20$$ $$15$$ $$26$$
    $$ 20-25$$ $$10$$ $$36$$
    $$ 25-30$$$$ 5$$ $$41$$
    $$30-35$$ $$4$$ $$45$$
     $$35-40$$ $$2$$ $$47$$
     $$40-45$$ $$2$$ $$49$$
    Now $$\dfrac{N}{2}=24.5$$. 
    Thus CF just more than $$24.5$$ is $$26$$. Corresponding Class is $$15-20$$.
    $$l=15$$, (lower limit)
    $$cf=11$$, (cf to class $$15-20$$)
    $$h=5$$  (class size)
    and $$f=15$$.

    Hence median is 
    $$=l+\left(\dfrac{\dfrac{n}{2}-cf}{f}\right)\times h$$

    $$=15+\left(\dfrac{24.5-11}{15}\right)\times 5$$

    $$=15+(\dfrac{13.5}{3})$$

    $$=15+4.5$$
    $$=19.5$$
  • Question 3
    1 / -0
    If the difference of Mode and Median of a data is $$24$$, then the difference of Median and Mean is
    Solution
    $$\textbf{Step -1: Use suitable formula to find the desired value.}$$
                      $$\text{Given, Mode - Median = 24....(1)}$$

                      $$\text{We know that, Mode = 3 Median - 2 Mean}$$

                      $$\text{Then, }$$
                      $$\Rightarrow\text{Mode = Median + 2 Median - 2 Mean}$$
                      $$\Rightarrow\text{Mode - Median = 2 (Median - Mean)}$$
                      $$\Rightarrow\text{2 (Median - Mean) = 24}$$             $$\textbf{[From (1)]}$$
                      $$\Rightarrow\text{(Median - Mean) = }\dfrac{24}{2}$$
                      $$\Rightarrow\text{(Median - Mean) = 12}$$

    $$\textbf{Hence, option A is correct.}$$
  • Question 4
    1 / -0
    The arithmetic mean and mode of a data are $$24$$ and $$12$$ respectively, Then the median of the data is
    Solution
    Given:
    Mean$$=24$$ and Mode$$=12$$

    Apply the relation between mean, median and mode.

    Mode $$=3 $$ Median$$-$$ $$2$$ Mean

    Put the respective values.

    $$12=3$$ Median$$-2\times 24$$

    $$3$$ Median $$=60$$

    Median $$=20$$
  • Question 5
    1 / -0
    The mode for the following frequency distribution is:

    Size of
    items
    Frequency Size of items Frequency
    0-4 5 20-24 10
    4-8 7 24-28 6
    8-12 9 28-32 3
    12-16 17 32-36 1
    16-20 12 36-40 0


    Solution
    For finding the mode of a grouped frequency distribution, we need to identify the modal class first.
    Here, the maximum frequency is $$17$$ and the corresponding class is $$12-16$$. 
    Hence, $$12-16$$ is the modal class.
    We know that,
    Mode $$=l + \displaystyle\cfrac{f-f_1}{2f - f_1 - f_2}\times h $$
    Where, $$l\rightarrow $$ lower limit of the modal class
                $$f\rightarrow $$ frequency of the modal class
              $$f_1\rightarrow $$ frequency of the class preceding the modal class
              $$f_2\rightarrow $$ frequency of the class succeeding the modal class
              $$h\rightarrow $$ class width

    Here, $$l = 12,\space h = 4, \space f= 17, \space f_1 = 9$$ and $$f_2 = 12$$
                $$= 12+\displaystyle\cfrac{17-9}{34-9-12}\times 4$$
    $$\Rightarrow  $$ Mode $$= 12 + \displaystyle\cfrac{8}{13}\times4 = 12 + \displaystyle\frac{32}{13} = 12 +2.46 = 14.46$$

    Hence, the mode of the give frequency distribution is $$14.46$$.
  • Question 6
    1 / -0
    If the ratio of mode and median of a distribution is $$6:5$$, then the ratio of its mean and median is
    Solution
    We have 
    Mode $$:$$ Median $$= 6:5$$ 
    $$ \Rightarrow $$ Mode $$= 6\lambda, $$  Median $$= 5\lambda$$
    Now,
    Mode $$ = 3$$ Median $$ - 2$$ Mean
    $$\Rightarrow \quad 6\lambda = 3\times5\lambda - 2$$ Mean 
    $$\Rightarrow$$ Mean $$= \displaystyle\frac{9}{2}\lambda$$
    $$\therefore $$  Mean $$:$$ Median $$= \displaystyle\frac{9\lambda}{2}:5\lambda = 9:10$$
  • Question 7
    1 / -0
    If the ratio of mean and median of a certain data is $$2:3$$, then the ratio of its mode and mean is: 
    Solution
    Given: $$ \displaystyle\frac{Mean}{Median} = \displaystyle\frac{2}{3}$$ 

    Let say $$ \quad \Rightarrow\space Mean = 2\lambda \space \space and \space  \space Median = 3\lambda$$

    We know that, 

    $$\quad Mode = 3Median \space - 2Mean$$

    $$\Rightarrow \quad Mode = 9\lambda - 4\lambda = 5\lambda$$

    $$\therefore\quad Mode :  Mean = 5\lambda:2\lambda = 5:2$$
  • Question 8
    1 / -0
    If in  a moderately asymmetrical distribution mean and mode are  $$9a$$ and $$6a $$ respectively then median of the distribution is...............
    Solution
    According to the given data, $$\mbox{mean}=9a, \mbox{mode}=6a$$

    Use the relationship between mean, median and mode. 

    $$\mbox{mode}=3\mbox{median}-2\mbox{mean}$$
    $$\displaystyle \therefore \mbox{median} = \frac{\mbox{mode}+2\mbox{mean}}{3}=\frac{6a+(2\times 9a)}{3}$$
                        $$=8a$$
  • Question 9
    1 / -0
    In a frequency distribution the mean and median are $$21 $$ and $$ 22 $$ respectively, then its mode is approximately 
    Solution
    $$\textbf{Step 1 : Use the formula to find Mode }$$
                    $$\text{Given, Mean= 21 and Median= 22}$$
                    $$\text{Using the Emperical relation}$$
                    $$\text{Mode = 3 Median - 2 Mean }$$
                    $$\text{Mode = 3(22) - 2(21)}$$
                    $$\Rightarrow \text{Mode = 66 - 42}$$
                    $$\Rightarrow \text{Mode = 24}$$ 

    $$\textbf{Hence , Option C is correct}$$
  • Question 10
    1 / -0
    Following is the distribution of the size of certain farms from a taluka (tehasil)
    Find median size of farms.
    Size of farm (in acres)5 - 1515 - 2525 - 3535 - 4545 - 5555 - 6565 = 75
    No. of farms71217253153
    Solution
    Consider the following table, to calculate median:
     $$ci$$ $$f_i$$ $$cf$$
     5-15 7 7
     15-25 12 7+12=19
     25-35 17 19+17=36
     35-45 25 36+25=61
     45-55 31 61+31=92
     55-65 5 92+5=97
     65-75 3 97+3=100
    Median $$=l +\dfrac {(\dfrac{N}{2}-cf)}{ f_m}\times c$$
    Here, 
    Class Interval $$c=10$$
    $$N=\Sigma f_i=100$$   
    $$\dfrac {N}{2}=50  $$
    $$\Rightarrow$$ Median class $$=35-45$$
    $$\Rightarrow$$Frequency of median class$$ f_m=25$$
    Lower boundary of median class $$l=35$$
    previous cumulative frequency of median class $$cf=36$$

    $$\therefore$$ Median $$=35 +\dfrac {(\dfrac{100}{2}-36)}{ 25}\times 10$$

    $$\therefore$$ Median $$=35 +\dfrac {(14)}{ 25}\times 10$$

    $$\therefore$$ Median $$=40.60$$
    Hence. option $$D$$ is correct.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now