Self Studies

Statistics Test - 35

Result Self Studies

Statistics Test - 35
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Median of the following freq. dist.
    $$\displaystyle x_{i}$$361012715
    $$\displaystyle f_{i}$$34281310
    Solution

       $$ X_1$$

       $$ F_1$$

      $$Cf$$

        $$ 3$$

        $$3$$

     $$ 3$$

         $$6$$

        $$4$$

      $$7$$

         $$10$$

       $$ 2$$

      $$9$$

        $$ 12$$

        $$8$$

     $$17$$

         $$7$$

       $$13$$

     $$30$$

        $$15$$

       $$10$$

     $$40$$

                      $$ N=40$$

    Then $$\dfrac{N}{2}=\dfrac{40}{2}=20$$

    We see that the $$\dfrac{N}{2}=20$$ then  commutative freq. excess $$20$$ is $$30 $$

    the value of $$x_1$$ of $$cf  \quad30$$ is $$7$$

    then Median is $$7$$

  • Question 2
    1 / -0
    If the mean of following frequency distribution. is $$ 2.6$$, then the value of f is:
    $$\displaystyle x_{i}$$
    12345
    $$\displaystyle f_{i}$$54f23
    Solution
    Frequency Distribution table:
     $$xi$$ $$f_i$$ $$f_ix_i$$
     $$1$$$$ 5$$$$5$$
     $$2$$$$4$$ $$8$$
     $$3$$$$ f$$ $$3f$$
     $$4$$$$2$$ $$8$$
     $$5$$$$3$$ $$15$$
    $$N=\Sigma f_i=14+f$$          
    $$\Sigma f_ix_i=36+3f$$

    Mean $$= 2.6=\dfrac {36+3f}{14+f}$$
    $$\therefore36.4+2.6f=36+3f$$
    $$\therefore 0.4f=0.4$$
    $$\therefore f=1$$
    Hence, option $$B$$ is correct.
  • Question 3
    1 / -0
    The median of the following data is 32.5:
    Class interval
    Frequency
    0-10
    x
    10-20
    5
    20-30
    9
    30-40
    12
    40-50
    y
    50-60
    3
    60-70
    2
    Total
    40
    Find the value of x and y.
    Solution
    Frequency distribution table:
     $$ci$$ $$f_i$$ $$cf$$
     $$0-10$$ $$x$$ $$x$$
     $$10-20$$ $$5$$ $$x+5$$
     $$20-30$$ $$9$$ $$x+14$$
     $$30-40$$ $$12$$ $$x+26$$
     $$40-50$$ $$y$$ $$x+y+26$$
     $$50-60$$ $$3$$ $$x+y+29$$
     $$60-70$$ $$2$$ $$x+y+31$$
    Median $$=l +\dfrac {\bigg(\dfrac{N}{2}-cf\bigg)}{ f_m}\times c$$
    Here, 
    Class Interval $$c=10$$
    $$N=\Sigma f_i=40$$   ...(given)
    $$N=\Sigma f_i=x+y+31$$ 
    $$\Rightarrow x+y+31=40$$
    $$\Rightarrow y=9-x$$  ...(1)
    $$\because Median=32.5$$
    $$\Rightarrow$$ Median class $$=30-40$$
    $$\Rightarrow$$Frequency of median class$$ f_m=12$$
    Lower boundary of median class $$l=30$$
    previous cumulative frequency of median class $$cf=x+14$$

    $$\therefore$$ 32.5$$=30 +\dfrac {\bigg(\dfrac{40}{2}-(x+14)\bigg)}{ 12}\times 10$$

    $$\therefore$$ 32.5$$=30+\dfrac {(20-x-14)}{ 12}\times 10$$
    $$\therefore 195=180+100-5x-70$$
    $$\therefore$$ $$5x=15$$
    $$\therefore$$ $$x=3$$
    substituting $$x$$ in (1), we get
    $$y=9-3$$
    $$\therefore$$ $$y=6$$
    Hence. option $$B$$ is correct.
  • Question 4
    1 / -0
    The mode of the following frequency distribution is
    Class1-1011-2021-3031-4041-50
    $$\displaystyle f_{i}$$57864
    Solution
    Frequency distribution table:
     $$ci$$ $$f_i$$
     $$0.5-10.5$$ $$5$$
     $$10.5-20.5$$ $$7(f_0)$$
     $$20.5-30.5$$ $$8(f_1)$$
     $$30.5-40.5$$ $$6(f_2)$$
     $$40.5-50.5$$ $$4$$
    $$Mode=l+\bigg ( \dfrac{f_1-f_0}{2f_1-f_0-f_2} \bigg )\times h$$
    Here,
    maximum frequency $$f_1=8$$
    $$\Rightarrow$$ modal class $$=20.5-30.5$$
    lower limit of modal class $$l=20.5$$    
    class size $$h=10$$
    preceding frequency of modal class $$f_0=7$$
    succeeding frequency of modal class $$f_2=6$$
    $$\therefore Mode=20.5+\bigg ( \dfrac{8-7}{16-7-6} \bigg )\times 10$$
    $$\therefore Mode=20.5+\bigg ( \dfrac{1}{3} \bigg )\times 10$$
    $$\therefore Mode=23.83$$
    Hence, option $$B$$ is correct.
  • Question 5
    1 / -0
    If the difference of mode and median of a data is $$24$$ then the difference of median and mean is
    Solution
    $$\textbf{Step -1: Use suitable formula to find the desired value.}$$
                      $$\text{Given, Mode - Median = 24....(1)}$$

                      $$\text{We know that, Mode = 3 Median - 2 Mean}$$

                      $$\text{Then, }$$
                      $$\Rightarrow\text{Mode = Median + 2 Median - 2 Mean}$$
                      $$\Rightarrow\text{Mode - Median = 2 (Median - Mean)}$$
                      $$\Rightarrow\text{2 (Median - Mean) = 24}$$             $$\textbf{[From (1)]}$$
                      $$\Rightarrow\text{(Median - Mean) = }\dfrac{24}{2}$$
                      $$\Rightarrow\text{(Median - Mean) = 12}$$

    $$\textbf{Hence, option A is correct.}$$ 
  • Question 6
    1 / -0
    The median of the following distribution is
    Class interval35-4545-5555-6565-70
    Frequency8122010
    Solution
     Class interval Frequency Cumulative frequency
    $$35-45$$$$8$$ $$8$$
     $$45-55$$$$12$$  $$8+12=20$$
     $$55-65$$$$20$$  $$20+20=40$$
     $$65-70$$$$10$$  $$40+10=50$$
     Total$$(N)=50$$ 
    $$N=50$$
    $$\therefore \dfrac {N}{2} = 25 $$
    $$\implies$$ Median lies in the class $$55 - 65$$

    Now, median $$=  { l }_{ 1 }

    +\left[ \dfrac { \frac { N }{ 2 } -cf }{ f }  \right] \times \quad h $$
    where, $$l_1=$$
     lower limit of the median class 

    $$ f = $$ frequency of the median class

    $$  h = $$ width (size) of the median class

    $$ cf = $$ cumulative frequency of the class preceding the median class

    $$\therefore$$ Median $$ =55+\left[ \dfrac { \frac { 50 }{ 2 } -20 }{ 20 }  \right] \times 10 = 57.5 $$

    Hence, option B is correct.
  • Question 7
    1 / -0
    If the mode of a distribution is 18 and the mean is 24, then median is
    Solution
    Relation between mean, mode and median is given by :
    $$\text{mode} = 3 \times \text{median} - 2 \times \text {mean}$$
    $$ $$
    Hence, median 
    $$= \dfrac{\text{mode} + 2 \times \text {mean}}{3}$$

    $$=\displaystyle \frac{18+2\times24}{3}=\frac{66}{3}=22$$
  • Question 8
    1 / -0
    The mode of the following frequency  distribution is
    Class1- 1011-2021-3031-4041-50
    $$f_i$$57864
    Solution
    First we changed the classes into continuous form,we have
    class            0.5 - 10.5    10.5 - 10.5    20.5 - 30.5    30.5 - 40.5   40.5 - 50.5
    $$f_i$$              5            7          8             6        4
    Here model class is $$20.5 - 30.5$$.
    $$\displaystyle \therefore Mode = l + \frac{(f_0 - f_1)}{2 f_0 - f_1 - f_2} \times h$$
    $$= \displaystyle 20.5 + \frac{(8-7)}{(16-7-6)} \times 10 = 23.83$$
  • Question 9
    1 / -0
    Median of the following frequency. distribution.
    $$x_i$$361012715
    $$f_i$$34281310
    Solution
    We arranged the value of variate $$x_i $$ in ascending order with their frequencies.
    $$x_i$$3   6    7       10    12     15
    c.f.3720223040
    Here $$N = 40$$ (even)
    $$\therefore\text{Median} = \displaystyle \frac{\left( \frac{N}{2} \right )\text{th term} + \left( \frac{N}{2}+1 \right )\text{th term}}{2}$$
    $$= \displaystyle \frac{(20)\text{th term} + (21) \text{th term}}{2}$$
    $$= \displaystyle \frac{7+ 10}{2} = 8.5$$
  • Question 10
    1 / -0
    In the frequency distribution of discrete data given below the frequency $$y$$ against value $$0$$ is missing 
    Variable $$(x)$$$$0$$$$1$$$$2$$$$3$$$$4$$$$5$$
    Frequency $$(f)$$$$y$$$$20$$$$40$$$$40$$$$20$$$$4$$
    If the mean is $$2.5$$ then the missing frequency $$y$$ will be __________
    Solution
    Mean $$=\displaystyle \frac{\sum f_ix_i}{\sum f_i}$$
    $$\displaystyle \Rightarrow \frac{0\times y+1\times 20+2\times 40+3\times 40+4\times 20+5\times 4}{y+20+40+40+20+4}=2.5 $$
    $$\displaystyle \Rightarrow \frac{20+80+120+80+20}{124+y}=2.5 $$
    $$\displaystyle \Rightarrow 320=2.5\left ( 124+y \right )$$
    $$\displaystyle \Rightarrow 320=310+2.5y\\\Rightarrow 2.5y=10\\\Rightarrow y=4 $$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now