Self Studies

Statistics Test - 36

Result Self Studies

Statistics Test - 36
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Find the median of the following data
    C.I.0-1010-2020-3030-4040-50
    f1213252010
    Solution
     C.I.mid point
    (m)
     frequency
    (f)
     (m-25)/10
    (d)
    fd  c.f.
     0-10 5 12 -2 -24 12
     10-20 15 13 -1 -13 25
     20-30 25 25 0 0 50
     30-40 35 20 1 20 70
     40-50 45 10 2 20 80
       n=80  $$\sum fd=3$$ 
    Median is given by $$L+\dfrac{\dfrac n2 -c.f.}{f}\times i$$

    where $$L$$ is the lower limit of the median class. (median class is the class where $$\dfrac n2^{th}$$ term is lying)
    $$c.f.$$ is the cumulative frequency of the class preceding the median class
    $$f$$ is the frequency of the median class
    $$i$$ is the class interval of the median class. 

    From the above table,
    $$L=20$$
    $$\dfrac n2 =40$$
    $$c.f.=25$$
    $$f=25$$
    $$i=10$$

    Therefore, $$median=20+\dfrac{40 -25}{25}\times 10=20+6=26$$

  • Question 2
    1 / -0
    If the ratio of mode and median is $$7 : 4$$, then the ratio of mean and mode is: 
    Solution
    Mode = 3 Median - 2 Mean
    $$\displaystyle \therefore $$ Mode : Median = 7 : 4 
    $$\displaystyle \therefore $$ Let, Mode = 7x and Median = 4x
    $$\displaystyle \therefore \quad 7x=3\times 4x-2$$ Mean
    $$\displaystyle \Rightarrow \quad 7x=12x-2$$ Mean
    $$\displaystyle \Rightarrow \quad 2 Mean =5x\Rightarrow Mean=\frac { 5 }{ 2 } x$$
    $$\displaystyle \therefore $$ Mean : Mode = $$\displaystyle \frac { 5 }{ 2 } x:7x=5x:14x$$
    $$\displaystyle =5:14$$
  • Question 3
    1 / -0
    The upper limit of the median class of the following distribution is 
    Class0-56-1112-1718-2324-29
    Frequency 131015811
    Solution
    Converting the data into continuous frequency distribution by adding 0.5 to upper limit and subtracting 0.5 to lower limit, we get;

    Class Frequency Cummulative
    Frequency 
     0.-5.513 13 
     5.5-11.510 23 
    11.5-17.5  15 38
    17.5-23.5  846 
    23.5-29.5  11 57
      $$\Sigma f_i=57$$ 
    $$\cfrac{N}{2}=\cfrac{57}{2}=28.5$$
    $$38$$ is just greater than $$28.5$$
    $$\therefore \;$$The Median class is $$11.5-17.5.$$
    Thus the upper limit is equal to $$17.5$$.
  • Question 4
    1 / -0
    Find the mode of following distribution
    C.I.0-1010-2020-3030-4040-5050-6060-7070-80
    Freq.5871228201010
    Solution
    The frequency table of the given observations are:
    $$\displaystyle x_{i}$$$$\displaystyle f_{i}$$
    $$0 - 10$$$$5$$
    $$10 - 20$$$$8$$
    $$20 - 30$$$$7$$
    $$30 - 40$$$$12$$
    $$40 - 50$$$$28$$
    $$50 - 60$$$$20$$
    $$60 - 70$$$$10$$
    $$70 - 80$$$$10$$
    $$\displaystyle l=40,f_{o}=12,f_{1}=28,f_{2}=20$$
    Mode $$\displaystyle =l+\left ( \frac{f_{1}-f_{o}}{2f_{1}+f_{o}-f_{2}} \right )\times h$$
    Mode $$=40+\left ( \dfrac{28-12}{56-12-20} \right )\times 10$$
    Mode $$=40+\dfrac{160}{24}=40+6.67$$
    Mode $$= 46.67$$
  • Question 5
    1 / -0
    If the ratio of mean and median of a certain data is $$2 : 3$$, then find the ratio of its mode and mean
  • Question 6
    1 / -0
    Find the missing value of P for the following distribution whose mean is $$12.58$$
    $$x_i$$581012P2025
    $$f_i$$
    25822742
    Solution
    Given $$x = 12.58$$
    Calculation of Mean
    $$\displaystyle x_{i}$$                      $$\displaystyle f_{i}$$                      $$\displaystyle f_{i}x_{i}$$
    $$5$$          $$2$$            $$10$$
    $$8$$              $$5$$       $$40$$
    $$10$$          $$8$$       $$80$$
    $$12$$          $$22$$       $$264$$
    $$P$$          $$7$$       $$7P$$
    $$20$$          $$4$$       $$80$$
    $$25$$          $$2$$       $$50$$
    $$\displaystyle \sum f_{i}=50$$$$\displaystyle \sum f_{i}x_{i}=524+7p$$
    $$\displaystyle \overline{x}\frac{\sum f_{i}x_{i}}{\sum f_{i}}\Rightarrow 12.58=\frac{524+7P}{50}$$
    $$\displaystyle 629=524+7P\\7P=105\\P=15$$
  • Question 7
    1 / -0
    The marks in science of $$80$$ students of class X are given below. Find the mode of the marks obtained by the students in science
    C.I.0-1010-2020-3030-4040-5050-6060-7070-8080-9090-100
    Freq.35161213205411
    Solution
     
    $$\displaystyle x_{i}$$                 $$\displaystyle f_{i}$$
    $$0 - 10$$$$3$$
    $$10 - 20$$$$5$$
    $$20 - 30$$$$16$$
    $$30 - 40$$$$12$$
    $$40 - 50$$$$13$$
    $$50 - 60$$$$20$$
    $$60 - 70$$$$5$$
    $$70 - 80$$$$4$$
    $$80 - 90$$$$1$$
    $$90 - 100$$$$1$$

    $$\displaystyle l=50,f_{o}=13,f_{1}=20,f_{2}=5,h=10$$
    Mode = $$\displaystyle l+\left ( \frac{f_{1}-f_{o}}{2f_{1}-f_{o}-f_{2}} \right )\times h$$

    $$\implies Mode=50+\left ( \dfrac{20-13}{40-13-5} \right )\times 10$$
    $$\implies \displaystyle Mode = 50+\frac{70}{22}=50+3.17$$
    $$\therefore Mode=53.17$$
  • Question 8
    1 / -0
    Find the missing frequencies and the median for the following distribution if the mean is 1.46 and the sum of all frequencies is 200
    No. of accidents012345
    No. of days46$$\displaystyle f_{1}$$$$\displaystyle f_{2}$$25105
    Solution
    $$\displaystyle x_{i}$$
    $$\displaystyle f_{i}$$$$\displaystyle f_{i}x_{i}$$
    0460
    1$$\displaystyle f_{1}$$$$\displaystyle f_{1}$$
    2$$\displaystyle f_{2}$$$$\displaystyle 2f_{2}$$
    32575
    41040
    5525
    $$\displaystyle \sum f_{i}=86+f_{1}+f_{2}$$$$\displaystyle \sum f_{i}x_{i}=140+f_{1}+2f_{2}$$
    Given $$\displaystyle \overline{x}=1.46,\sum f_{i}=200\: \: \Rightarrow \overline{x}=\frac{\sum f_{i}x_{i}}{\sum f_{i}}$$
    $$\displaystyle 1.46=\frac{140+f_{1}+2f_{2}}{200}\: \: \Rightarrow 292=140+f_{1}+2f_{2}\: \: \Rightarrow f_{1}+2f_{2}=152...........(i)$$
    Also $$\displaystyle 86+f_{1}+f_{2}=200\: \: \Rightarrow f_{1}+f_{2}=114.........(ii)$$
    Solving equation (i) and (ii) $$\displaystyle f_{1}=76\: \: and\: \: f_{2}=38$$  For Median
    $$\displaystyle x_{i}$$           $$\displaystyle f_{i}$$                 c.f.
    04646
    176122
    238160
    325185
    410195
    55200
    $$N = 200$$    So, Median $$\displaystyle =\frac{\left ( \frac{N}{2} \right )^{th}obs+\left ( \frac{N}{2}+1 \right )^{th}obs}{2}$$
    $$\displaystyle =\frac{100^{th}obs+101^{th}obs}{2}=\frac{1+1}{2}=1$$
    $$\therefore$$  Median = 1
  • Question 9
    1 / -0
    If the median of the following frequency distribution is $$28.5$$. find the missing frequencies.
    C.I.0-1010-2020-3030-4040-5050-60Total
    Freq.5$$\displaystyle f_{1}$$2015$$\displaystyle f_{2}$$560
    Solution
    $$\displaystyle x_{i}$$$$\displaystyle f_{i}$$c.f.
    0 - 1055
    10 - 20$$\displaystyle f_{1}$$5 + $$\displaystyle f_{1}$$
    20 - 302025 + $$\displaystyle f_{1}$$
    30 - 401540 + $$\displaystyle f_{1}$$
    40 - 50$$\displaystyle f_{2}$$40 + $$\displaystyle f_{1}+f_{2}$$
    50 - 60545 + $$\displaystyle f_{1}+f_{2}$$
    Given : Median = 28.5 So Median class = 20 - 30 and 45 + $$\displaystyle f_{1}+f_{2}=60$$
     $$\displaystyle f_{1}+f_{2}=15$$ Here $$\displaystyle l=20,c=5,f_{1},f=20,h=10x_{i}$$
    So Median $$\displaystyle =l+\left ( \frac{\frac{N}{2}-c}{f}\times h \right )\: \: \Rightarrow 8.5=20+\left ( \frac{30-5-f_{1}}{20} \right )\times 10$$
    $$\displaystyle 8.5=\frac{25-f_{1}}{2}\: \: \Rightarrow 25-f_{1}=17\: \: \Rightarrow f_{1}=8$$
    when $$\displaystyle f_{1}=8.8+f_{2}=15\: \: \Rightarrow f_{2}=7$$ So $$\displaystyle f_{1}=8$$ and $$\displaystyle f_{2}=7$$
  • Question 10
    1 / -0
    Calculate the median from the following data
    Rent (in Rs)$$15-25$$$$25-35$$$$35-45$$$$45-55$$$$55-65$$$$65-75$$$$75-85$$$$85-95$$
    No. of Houses$$8$$$$10$$
    $$15$$$$25$$$$40$$$$20$$$$15$$$$7$$
    Solution
    C.I.$$\displaystyle f_{i}$$      c.f.
    15 - 25       8        8
    25 - 3510       18
    35 - 4515        33
    45 - 5525       58
    55 - 6540       98
    65 - 7520       118
    75 - 8515        133
    85 - 957         140
    $$\displaystyle N=140\Rightarrow \frac{N}{2}=70$$
    So, $$\displaystyle l=55,h=10,c=58,f=40$$      
    Median $$=l+\dfrac{\left ( \dfrac{N}{2}-c \right )\times h}{f}$$
    $$\displaystyle =55+\frac{(70-58)\times 10}{40}$$
    $$= 55+\dfrac{120}{40}$$
    Median $$= 55 + 3 = 58$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now