Self Studies

Statistics Test - 42

Result Self Studies

Statistics Test - 42
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    A group of $$50$$ house owners contributes money towards children's education of their street. The amount of money collected is shown in the table below: (use direct method).

    Solution
    Answer:- Given $$\Sigma f=50$$
    Using frequency distribution table

    Amount No. of house owners $$x_i$$ $$x_i f_i$$ 
    0-10 25 
    10-20  10 15 150
     20-30 15 25375 
    30-40  10 35350 
    40-50  10 45450 
     $$\Sigma f_i=50$$  $$\Sigma f_i x_i = 1350$$ 
    $$\therefore$$ Amount of money collected = Arithmetic mean
    $$\Rightarrow \; Mean = \cfrac{\Sigma f_i x_i}{\Sigma f_i} = \cfrac{1350}{50}=27$$
    $$\therefore \; $$ the amount of money collected = 27Rs.
    A) Rs. 27
  • Question 2
    1 / -0
    Calculate the average income of workers .

    Solution
    Arithmetic mean using direct method formula is $$\bar { x } = \dfrac { \sum { { f }_{ i }{ x }_{ i } }  }{ \sum { { f }_{ i } }  } $$
    $$\bar { x } = \dfrac { 28,600 }{ 3,200 } $$
    $$\bar { x } = 8.93\sim 9$$  rupees.
    Therefore, the mean of the number of children is approximately $$9$$ rupees.

  • Question 3
    1 / -0
    Find the arithmetic mean of the following table using direct method.

    Solution
    Arithmetic mean using direct method formula is $$\bar { x } = \dfrac { \sum { { f }_{ i }{ x }_{ i } }  }{ \sum { { f }_{ i } }  } $$
    $$\bar { x } = \dfrac { 35,000 }{ 1,000 } $$ min
    $$\bar { x } = 35   $$ min

  • Question 4
    1 / -0
    Calculate the mean of the number of children of frequency .

    Solution
    Arithmetic mean using direct method formula is $$\bar { x } = \dfrac { \sum { { f }_{ i }{ x }_{ i } }  }{ \sum { { f }_{ i } }  } $$
    $$\bar { x } = \dfrac { 1,041 }{ 35 } $$
    $$\bar { x } = 29.74 \sim 30$$.
    Therefore, the mean of the number of children is approximately $$30$$.

  • Question 5
    1 / -0
    Calculate arithmetic mean using direct method for the following data shows distance covered by $$50$$ persons to perform their work inside the factory.

    Solution
    Answer:- Using direct  method 
    Representing the data into frequency distribution table 
    $$x_i =\text{mid point of each class interval}$$

    Class intervalNo. of workers
    $$(f_i)$$
    $$x_i$$$$f_i x_i$$
    1-11 46 24
     11-21 6 16 96
     21-31 1026 260
     31-41 12 36 432
     41-51 18 46 828
     $$\Sigma f_i=50$$ $$\Sigma f_ix_i=1640$$
    $$\therefore \; mean = \cfrac{\Sigma f_ix_i}{\Sigma f_i} =\cfrac{1640}{50}=32.8$$
    Average distance covered by 50 persons = 32.8
    B)32.8

  • Question 6
    1 / -0
    Calculate arithmetic mean using direct method for the following data shows distance covered by $$125$$ buses to perform its duty.

    Solution
    Answer:- Using direct method 
    Representing the data into frequency distribution table 

    Distance
    $$(x_i)$$
    No. of buses
    $$(f_i)$$
    $$f_ix_i$$
    $$50$$$$5$$$$ 250$$
    $$ 45$$ $$15$$ $$675$$
     $$35$$ $$25$$$$ 875$$
    $$20$$ $$35$$ $$700$$
    $$10$$ $$45$$ $$450$$
     $$\Sigma f_i=125$$$$\Sigma f_i x_i =2950$$
    $$\therefore \; mean = \cfrac{\Sigma f_ix_i}{\Sigma f_i} =\cfrac{2950}{125} = 23.6$$
    $$\therefore$$ The distance covered by $$25$$ buses is $$23.6\ km$$

  • Question 7
    1 / -0
    Joshua's mark obtained for each subject is given below. Find the average mark 

    Solution
    Answer:- Using direct method

    Marks obtained 
    $$x_i$$
    No. of students
    $$f_i$$ 
    $$f_i x_i$$ 
     90270
     9292 
    95190 
    86 344
    96  5480

     
      $$\Sigma f_i = 15$$$$\Sigma f_i x_i = 1376$$ 
    Mean = $$\cfrac{\Sigma f_i x_i}{\Sigma f_i} = \cfrac{1376}{15} = 92$$
    D) 92
  • Question 8
    1 / -0
    Find the mean height of $$30$$ players using direct method:

    Solution
    Answer:- Using direct method

    Height (in cm) 
    $$x_i$$
    No. of Players
    $$f_i$$ 
    $$f_i x_i$$ 
    1003300
    120720
    1502300
    160 800
    170 101700
    180  4720
      $$\Sigma f_i = 30$$$$\Sigma f_i x_i = 4540$$ 
    Mean = $$\cfrac{\Sigma f_i x_i}{\Sigma f_i} = \cfrac{4540}{30} = 151.33 \simeq 151$$
    Average height is 151 cm.
    A)151
  • Question 9
    1 / -0
     Number of dog's 2-4 4-66-8  8-10
     weight (kg) 20 1012  15
    Find the arithmetic mean of dog's weight using direct method.
    Solution
     Number of dog'sWeight (kg)
    $$(f_i)$$ 
    Midpoint
    $$(X_i)$$
    $$f_iX_i$$ 
     2-4 20 3 $$20\times 3=60$$
     4-6 10 5 $$10\times 5=50$$
     6-8 12 7 $$12\times 7=84$$
     8-10 15 9 $$15\times 9=135$$
      $$\sum f_i = 57$$  $$\sum f_ix_i = 329$$
    Arithmetic mean using direct method formula is $$\bar { x } = \dfrac { \sum { { f }_{ i }{ x }_{ i } }  }{ \sum { { f }_{ i } }  } $$
    $$\bar { x } = \dfrac { 329 }{ 57 } $$
    $$\bar { x } = 5.77$$
    The average mean weight of the dog is $$5.77   kg$$.
  • Question 10
    1 / -0
    Find the mean height of $$100$$ trees:

    Solution
    Arithmetic mean using direct method formula is $$\bar { x } = \dfrac { \sum { { f }_{ i }{ x }_{ i } }  }{ \sum { { f }_{ i } }  } $$
    $$\bar { x } = \dfrac { 7,360 }{ 100 } $$
    $$\bar { x } = 73.60$$.
    Therefore, the average height is approximately $$74  $$ m.

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now