Self Studies

Statistics Test - 45

Result Self Studies

Statistics Test - 45
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Find the median height for the following data$$:$$
    Height(cm)
    $$50-100$$
    $$100-150$$
    $$150-200$$
    $$200-250$$
    Number of students
    $$2$$
    $$5$$
    $$6$$
    $$7$$
    Solution
    Height(cm)
    Number of students(f)
    Cumulative frequency(cf)
    $$50-100$$
    $$2$$
    $$2$$
    $$100-150$$
    $$5$$
    $$2+5=7$$
    $$150-200$$
    $$6$$
    $$7+6=13$$
    $$200-250$$
    $$7$$
    $$13+7=20$$

    $$n=\Sigma f=20$$
    $$\displaystyle\frac{n}{2}=\frac{20}{2}=10$$

    Median $$=l+\left(\displaystyle\frac{\displaystyle\frac{n}{2}-cf}{f}\right)\times h$$
    $$n=\Sigma f=$$ Total number of frequency $$=20$$
    $$\displaystyle\frac{n}{2}=\frac{20}{2}=10$$
    So, the median class is $$150-200$$
    L$$=$$ Lower limit of the median class $$=150$$
    cf$$=$$ Cumulative frequency of the class preceding the median class $$=13$$
    f$$=$$ Frequency of the median class $$=6$$
    h$$=$$ class width$$=50$$
    Therefore, Median $$=l+\left(\displaystyle\frac{\displaystyle\frac{n}{2}-cf}{f}\right)\times h$$
    $$=150+\left(\displaystyle\frac{\displaystyle\frac{20}{2}-13}{6}\right)\times 50$$
    $$=150+\left(\displaystyle\frac{10-13}{6}\right)\times 50$$
    $$=150-16.66$$
    $$=133.33$$
    Hence, the median height is $$133.33$$cm

  • Question 2
    1 / -0
    Find the median of the following distribution$$:$$
    Marks
    $$10-20$$
    $$20-30$$
    $$30-40$$
    $$40-50$$
    $$50-60$$
    Number of students
    $$12$$
    $$35$$
    $$45$$
    $$25$$
    $$13$$
    Solution
    Marks
    Students(f)
    Cumulative frequency(cf)
    $$10-20$$
    $$12$$
    $$12$$
    $$20-30$$
    $$35$$
    $$12+35=47$$
    $$30-40$$
    $$45$$
    $$47+45=92$$
    $$40-50$$
    $$25$$
    $$92+25=117$$
    $$50-60$$
    $$13$$
    $$117+13=130$$

    $$n=\Sigma f=130$$
    $$\displaystyle\frac{n}{2}=\frac{130}{2}=65$$

    Median $$=l+\left(\displaystyle\frac{\displaystyle\frac{n}{2}-cf}{f}\right)\times h$$
    $$n=\Sigma f=$$ Total number of frequency $$=130$$
    $$\displaystyle\frac{n}{2}=\frac{20}{2}=65$$
    So, the median class is $$30-40$$
    L$$=$$ Lower limit of the median class $$=30$$
    cf$$=$$ Cumulative frequency of the class preceding the median class $$=92$$
    f$$=$$ Frequency of the median class $$=45$$
    h$$=$$ class width$$=10$$
    Therefore, Median $$=l+\left(\displaystyle\frac{\displaystyle\frac{n}{2}-cf}{f}\right)\times h$$
    $$=30+\left(\displaystyle\frac{\displaystyle\frac{130}{2}-92}{45}\right)\times 10$$
    $$=30+\left(\displaystyle\frac{65-92}{45}\right)\times 10$$
    $$=30-6$$
    $$=24$$
    Hence, the median is $$24$$.
  • Question 3
    1 / -0
    Find the median class for the following data given below$$:$$
    Number of cars
    $$0-10$$
    $$10-20$$
    $$20-30$$
    $$30-40$$
    $$40-50$$
    $$50-60$$
    $$60-70$$
    $$70-80$$
    Frequency
    $$7$$
    $$9$$
    $$13$$
    $$21$$
    $$12$$
    $$15$$
    $$4$$
    $$12$$

    Solution

    To find the median class$$:$$

    First add the total number of frequencies.

    Here, $$f = 93$$

    $$= \dfrac{(Total\quad number\quad of \quad frequency)}{2}$$

    $$= (93)/2 = 46.5$$

    Hence, the value 46.5 lies in the class interval 30-40 from the cummulative frequency table.

  • Question 4
    1 / -0
    From the following data identify the median class$$:$$
    $$X_i$$
    $$0-5$$
    $$5-10$$
    $$10-15$$
    $$15-20$$
    $$f_i$$
    $$2$$
    $$4$$
    $$2$$
    $$2$$

    Solution

    To find the median class$$:$$

    First add the total number of frequencies.

    Here, $$f = 10$$

     $$= \dfrac{(Total\quad number\quad of \quad frequency )}{2}$$

    So, Median class $$= \dfrac{(10 )}{2} = 5$$

    Hence, the value 5 lies in the class interval 10-15 from the cummulative frequency table.

  • Question 5
    1 / -0
    A student noted that the number of cars passing through a particular spot on the road for $$200$$ periods each of $$10$$ minutes and summarized in a table given below. Find the mode of the data.
    Number of cars
    $$0-10$$
    $$10-20$$
    $$20-30$$
    $$30-40$$
    $$40-50$$
    $$50-60$$
    $$60-70$$
    $$70-80$$
    Frequency
    $$7$$
    $$9$$
    $$13$$
    $$21$$
    $$12$$
    $$15$$
    $$4$$
    $$12$$

    Solution

    Here, the maximum frequency is $$21,$$ and the class corresponding to that frequency is $$30-40$$ .

    We have to apply the formula $$Mode=l+\left(\displaystyle\frac{f_1-f_0}{2f_1-f_0-f_2}\right)\times h$$

    Where $$l$$ is the lower class limit of the modal class $$= 30$$

    $$f_1$$ is the frequency of the modal class $$= 21$$

    $$f_0$$ is the frequency of the class preceding the modal class in the frequency table $$= 13$$

    $$f_2$$ is the frequency of the class succeeding the modal class in the frequency table $$= 12$$

    $$h$$ is the class size of the modal class $$= 10$$


    Thus, $$Mode$$$$=30+\dfrac{21-13}{2×21-13-12}×10$$

                         $$=30+\dfrac{8}{17}×10$$

                         $$=30+4.71$$

                         $$=34.71$$


    Hence, the mode is $$34.71$$ .

  • Question 6
    1 / -0
    What is the median class for the following data given below?
    Time(min)
    $$10-20$$
    $$20-30$$
    $$30-40$$
    $$40-50$$
    Running race(km)
    $$10$$
    $$20$$
    $$3$$
    $$4$$

    Solution

    To find the median class:

    First add the total number of frequencies.

    Here, $$f = 37$$

    Formula to obtain the median class $$= \dfrac {(Total \quad number \quad of \quad frequency + 1)}{2}$$

    So, Median class $$= \dfrac{(37 + 1)}{2} = 19$$

    Hence, the median class of $$19$$ lies between the intervals $$10-20.$$

  • Question 7
    1 / -0
    Identify the median class.
    Farm size
    $$20-50$$
    $$50-80$$
    $$80-110$$
    $$110-140$$
    $$140-170$$
    Rooms
    $$4$$
    $$8$$
    $$12$$
    $$16$$
    $$20$$

    Solution

    To find the median class:

    First add the total number of frequencies.

    Here, $$f = 60$$

    $$=\dfrac{ (Total \quad number\quad  of \quad frequency )}{2}$$

    $$= (60 )/2 = 30$$

    Hence, the value 30 lies in the class interval 110-140 from the cummulative frequency table.

  • Question 8
    1 / -0
    Identify the median class from the given data$$:$$ 
    Fruits
    $$30-40$$
    $$40-50$$
    $$50-60$$
    $$60-70$$
    $$70-80$$
    $$80-90$$
    $$90-100$$
    Boxes
    $$1$$
    $$3$$
    $$6$$
    $$7$$
    $$8$$
    $$5$$
    $$7$$
    Solution
     
     $$Class$$$$Frequency$$ $$c.f$$ 
     $$30-40$$$$1$$ $$1$$ 
     $$40-50$$
    $$3$$ $$4$$ 
     $$50-60$$$$6$$ $$10$$ 
     $$60-70$$$$7$$ $$17$$ 
     $$70-80$$$$8$$ $$25$$ 
     $$80-90$$$$5$$ $$30$$ 
     $$90-100$$$$7$$ $$37$$ 
     $$N=37$$  
    $$\Rightarrow$$  Here total frequency, $$N=37$$

    so, $$\dfrac{N}{2}=\dfrac{37}{2}=18.5$$, which lies between cumulative frequencies $$17$$ and $$25$$. 

    And the corresponding class is $$70-80$$ .

    Hence, the median class is $$70-80$$ .
  • Question 9
    1 / -0
    From the following data identify the median class$$:$$
    Time(hour)
    $$5-15$$
    $$15-25$$
    $$25-35$$
    $$35-45$$
    $$45-55$$
    $$55-65$$
    Frequency
    $$20$$
    $$28$$
    $$17$$
    $$12$$
    $$6$$
    $$17$$

    Solution

    To find the median class$$:$$

    First add the total number of frequencies.

    Here, $$f = 100$$

     $$=\dfrac{(Total\quad number\quad of \quad frequency )}{2}$$

     $$= \dfrac{(100 )}{2} = 50$$

    Hence, value 50 lies in the class interval $$25-35$$ from a cumulative frequency table. 

  • Question 10
    1 / -0
    Identify the median class.
    X
    $$5-9$$
    $$9-13$$
    $$13-17$$
    $$17-21$$
    F
    $$3$$
    $$8$$
    $$9$$
    $$4$$

    Solution

    To find the median class$$:$$

    First add the total number of frequencies.

    Here, $$f = 24$$

     $$= \dfrac{(Total \quad number \quad of \quad frequency )}{2}$$

     $$=\dfrac{ (24)}{2} = 12$$

    Hence, the value 12 lies in the class interval 13-17 from the cummulative frequency table.

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now