Self Studies
Selfstudy
Selfstudy

Polynomials Test - 32

Result Self Studies

Polynomials Test - 32
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    What are the other two zeroes of the polynomial $$2x^4-6x^3+3x^2+3x-2$$ , if two of its zeroes are $$1$$ and $$2$$?
    Solution

  • Question 2
    1 / -0
    Obtain all the zeros of polynomial $$x^4-6x^3+4x^2+6x-5$$, if two of its zeros are $$3+\sqrt4$$ and $$3-\sqrt4$$.
    Solution

  • Question 3
    1 / -0
    What are the other two zeros of the polynomial $$x^4-5x^3-10x^2+80x-96$$, if two positive consecutive primes are two of its zeros?
    Solution

  • Question 4
    1 / -0
    What are the zeros of the polynomial $$x^4-6x^3+7x^2+6x-8$$, if two of its zeros are $$a$$ and $$2a$$, where $$a= 2$$?
    Solution

  • Question 5
    1 / -0
    If two of the zeros of the polynomial $$x^4-12x^2+27$$ are $$3$$ and $$-3$$, then the sum of all the zeros is _____.
    Solution

  • Question 6
    1 / -0
    Find the zeroes of the polynomial $$x^4+x^3-7x^2-x+6$$, if two of its zeroes are $$1$$ and $$-1$$
    Solution

  • Question 7
    1 / -0
    Obtain all the zeroes of the polynomial $$x^4+2x^3-13x^2-14x+24$$, if two of its zeroes are $$3$$ and $$-4$$.
    Solution

  • Question 8
    1 / -0
    The figure represents which polynomial

    Solution
    Given figure cuts the x - axis at two point. 
    So this is a quadratic equation.
    $$\therefore$$ figure represents quadratic polynomial.
    Option A is correct.
  • Question 9
    1 / -0
    The zeroes of the quadratic polynomial $$x^2 + 99x + 127$$ are
    Solution
    Product of zeroes = 127
    The sign is positive it means both the zeroes have same sign.
    Sum of zeroes = -99
    The sign is negative and both have same sign hence the zeroes are both negative.
  • Question 10
    1 / -0
    If all three zeroes of a cubic polynomial $$x^3 + ax^2+  bx + c$$ are positive, then which of the following is correct about $$a,b$$ and $$c$$?
    Solution
    Let the roots of the equation $$x^3+ ax^2 + bx +c =0$$ be $$\alpha, \beta, \gamma$$

    Then, sum of roots, $$\alpha + \beta + \gamma=- a$$. 

    Thus, $$a$$ is negative.

    Product of roots, taken two at a time, $$\alpha.\beta + \alpha.\gamma + \gamma.\beta = b$$. 

    Thus $$b$$ is positive

    Product of roots, $$\alpha.\beta.\gamma = -c$$. 

    Thus $$c$$ is negative.

    Hence, $$a$$ and $$c$$ have negative sign, but $$b$$ has positive sign.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now