Self Studies

Pair of Linear Equations in Two Variables Test - 20

Result Self Studies

Pair of Linear Equations in Two Variables Test - 20
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The solution of $$\sqrt{2}x+\sqrt{3}y=0$$ and $$\sqrt{3}x+\sqrt{8}y=0$$ is
    Solution
    $$\sqrt 2 x + \sqrt 3 y = 0 -  -  - \,\,\,\,\,\left( 1 \right) \times \sqrt 3 $$
    $$\sqrt 3 x + \sqrt 8 y = 0 -  -  - \,\,\,\,\,\left( 2 \right) \times \sqrt 2 $$
    subtracting both
    $$\left( {\sqrt 6 x + 3y} \right) - \left( {\sqrt 6 x + 4y} \right) = 0 - 0$$
    $$ - y = 0 \Rightarrow y = 0$$
    From (1)  $$\sqrt 2 x + \sqrt 3 y = 0$$
    $$ \Rightarrow \sqrt 2 x + 0 = 0$$
    $$ \Rightarrow x = 0$$
    So, point of intersection is $$(0,0)$$ 
  • Question 2
    1 / -0
    If $$7$$ pens and $$3$$ books cost $$Rs 1395$$, while $$5$$ pens and $$4$$ books cost $$Rs 1665$$. Find the cost of a  book
    Solution
    Let the cost of $$1$$ pen be $$x$$ 
    and the cost of $$1$$ book be $$y$$
    Then $$7x+3y=1395$$-----$$(1) \times 4$$ 
               $$5x+4y=1665--(2) \times 3$$
         $$4\times (1)$$ -------- $$3 \times (2)$$
    $$(28x+12y)-(15x+12y)=5580-4995$$
    $$13x=585$$
    $$x=45$$
    Putting $$x=45$$ in (1) 
    $$7 \times 45+3y=1395$$
    $$\Rightarrow 315+3y=1395$$
    $$\Rightarrow 3y=1395-315$$
    $$\Rightarrow 3y=1080$$
    $$\Rightarrow y=360$$
    Therefore Cost of one pen is Rs $$45$$ and cost of one book is Rs $$360$$ 

  • Question 3
    1 / -0
    The sum of two numbers is $$2$$ and their difference is $$1$$. Find the numbers.
    Solution
    Let two numbers be $$x$$ and $$y$$
    According to question sum of $$x$$ and $$y$$ is $$2$$ and difference is $$1$$
    $$\therefore x+y=2......(1)$$ and $$x-y=1......(2)$$

    Now adding equation $$(1)$$ and $$(2)$$
    $$x+y=2$$
    $$\underline{x-y=1}$$
    $$2x\quad=3$$
    $$ \Rightarrow x=\dfrac{3}{2}$$
    $$\Rightarrow x=1.5$$

    Now substitute the value of $$x$$ in equation $$(1),$$
    $$1.5+y=2$$
    $$\Rightarrow y=2-1.5$$
    $$\Rightarrow y=0.5$$
  • Question 4
    1 / -0
    To eliminate x, from $$3x+y=7$$ and $$-x+2y=2$$ second equation is multiplied by ______
    Solution

    $$by\>multiplying\>second\>equation\>with\>3\>,\>we\>get\\-3x+6y=6\\now\>by\>adding\>it\>with\>equation\\3x+y=7,\>values\>of\>unknowns\>can\>be\>calculated$$

  • Question 5
    1 / -0
    Solve:
    $$4x + \frac{6}{y} = 15$$
    $$6x - \frac{8}{y} = 14$$
    Solution
    Given: $$4x+\frac{6}{y}=15......(1)$$
    $$6x-\frac{8}{y}=14......(2)$$
    Multiplying equation (1) by 4 and equation (2) by 3 and then adding them,
    $$16x+\frac{24}{y}=60$$
    $$\underline{18x-\frac{24}{y}=42}$$
    $$34x\quad=102\Rightarrow x=3$$
    Now putting the value of x in equation (1)
    $$4\times3+\frac{6}{y}=15\Rightarrow\frac{6}{y}=15-12\Rightarrow\frac{6}{y}=3\Rightarrow y=\dfrac{6}{3}=2$$

  • Question 6
    1 / -0
     Solve for $$x$$ and $$y$$ by using method of substitution :
    $$0.2x+0.3y=1.3$$; $$0.4x+0.5y=2.3$$
    Solution
    $$0.2x+0.3y=1.3 \Rightarrow  2x+3y=13$$ 
                                    $$\Rightarrow x=\dfrac{13-3y}{2}$$ 
    and 
    $$0.4x+0.5y=2.3\Rightarrow 4x+5y=23$$ 
                                    $$\Rightarrow 4\left ( \dfrac{13-3y}{2} \right )+5y=23$$  
                                    $$\Rightarrow 26-6y+5y=23$$ 
                                    $$\Rightarrow 3=y$$
     $$\therefore x=\dfrac{13-3\times 3}{2}=2$$
  • Question 7
    1 / -0
    Solve 
    $$5x-4y+8=0$$
    $$7x+6y-9=0$$.
    Solution
    $$5x-4y+8 = 0$$...$$\times 7$$
    $$7x+6y-9 = 0$$....$$\times 5$$
    $$35x-28y+56 = 0$$
    $$35x+30y-45 = 0$$
    $$58y = 101$$
    $$y = \cfrac{101}{58}$$
    $$x = -\cfrac{6}{29}$$
  • Question 8
    1 / -0
    Solve : $$ ax + by = a - b$$
                 $$bx - ay = a + b$$
    Solution
    $$ax+by=a-b$$   ............ (1)
    $$bx-ay=a+b$$  .............. (2)

    Multiply equation (1) with $$a$$ and equation (2) with $$b$$ ,

    $$a^{2}x+aby=a^{2}-ab$$  ................. (3)

    $$b^{2}x-aby=ab+b^{2}$$  ................. (4)

    Adding equation (3) and (4), we get

    $$a^{2}x+b^{2}x=a^{2}+b^{2}$$

    $$\left ( a^{2}+b^{2} \right )x=a^{2}+b^{2}$$

    $$\Rightarrow x=1$$

    Substitute $$x=1$$ in equation (1),

    $$a(1)+by=a-b$$

    $$by=-b$$

    $$y=-\cfrac{b}{b}=-1$$
  • Question 9
    1 / -0
    Solve $$0.2x+0.3y=1.3$$ 
    $$0.4x+0.5y=2.3$$
    Solution
    Let $$0.2x+0.3y=1.3$$       ....$$\left(1\right)$$
        $$0.4x+0.5y=2.3$$       ....$$\left(2\right)$$
    Multiply eqn$$\left(1\right)$$ by $$10$$ we get
    $$2x+3y=13$$                ....$$\left(3\right)$$
    Multiply eqn$$\left(2\right)$$ by $$10$$ we get
    $$4x+5y=23$$                ....$$\left(4\right)$$
    Solving equations $$\left(3\right)$$ and $$\left(4\right)$$
    $$5\times \left(3\right)\Rightarrow 10x+15y=65$$
    $$3\times \left(4\right)\Rightarrow 12x+15y=69$$
    Subtracting we get $$12x+15y-10x-15y=69-65=4$$
    or $$2x=4$$ or $$x=2$$
    Substituting $$x=2$$ in eqn$$\left(3\right)$$ we get
    $$2x+3y=13\Rightarrow 2\times 2+3y=13$$ or $$3y=13-4=9$$ or $$y=3$$
    Hence $$x=2,y=3$$
  • Question 10
    1 / -0
    Given two straight lines $$x + y - 7 = 0$$ and $$x - y + 3 = 0$$ . Find point of intersection of them.
    Solution
    $$x+y-7=0.......eq1\\x-y+3=0......eq2$$
    Add both the equations
    Thus we get, $$2x-4=0\\2x=4\\x=\dfrac{4}{2}\\x=2\\2+y-7=0\\y=7-2=5\\(x,y)=(2,5)$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now