Self Studies

Pair of Linear Equations in Two Variables Test - 25

Result Self Studies

Pair of Linear Equations in Two Variables Test - 25
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Sum of two numbers is 97. If the larger number is divided by the smaller, the quotient is 7 and the remainder is 1. Find the numbers. 
    Solution
    $$\textbf{Step-1: Assume the numbers to be equal to some variables&  then apply all information's given.}$$

                     $$\text{Let the two numbers be}$$ $$x$$ $$\text{and}$$ $$y,$$ $$\text{where}$$ $$x$$ $$\text{is the larger number}$$

                     $$\text{Given, Sum of two numbers is 97}$$

                     $$ x + y = 97$$  $$\text{...(1)}$$

                     $$\text{As per the given condition,}$$

                     $$\text{If the larger number is divided by the smaller, the quotient is 7 and the remainder is 1}$$

                     $$ x = 7y +1 $$     $$\text{...(2)}$$

    $$\textbf{Step-2: Solve above equations.}$$

                     $$\text{Substitute eq(2) in eq(1) we get,}$$ 

                     $$7y+1 + y = 97\\ 8y = 96\\ y = 12\\ \therefore x = 7(12) +1 = 85$$

    $$\textbf{Hence, option - D is the answer.}$$
  • Question 2
    1 / -0
    Solve the following simultaneous equations :
    $$\displaystyle \frac{1}{3x}\, +\, \frac{1}{5y}\, =\, \frac{1}{15};\quad \frac{1}{2x}\, +\, \frac{1}{3y}\, =\, \frac{1}{12}$$
    Solution
    On putting $$\dfrac1x=X$$ and $$\dfrac1y=Y$$ in given equations, we get

    $$\dfrac X3+\dfrac Y5=\dfrac{1}{15}\Rightarrow 5X+3Y=1$$            ...(i)

    $$\dfrac X2+\dfrac Y3=\dfrac{1}{12}\Rightarrow 6X+4Y=1$$            ...(ii)
    On multiplying (i) by 6 and (ii) by 5, we get
    $$30X+18Y=6$$
    $$\underline {\underset {-}30X\underset {-}{+}20Y=\underset{-}5}$$
                 $$-2Y=1$$
    $$\therefore Y=-\dfrac12$$
    On putting $$Y=-\dfrac12$$ in (i), we get

    $$5X+3\times-\dfrac12=1\Rightarrow 5X=\dfrac52\Rightarrow X=\dfrac12$$

    $$\therefore x=\dfrac1X=2,y=\dfrac1Y=-2$$   
  • Question 3
    1 / -0
    A man starts his job with a certain monthly salary and a fixed increment every year. If his salary will be Rs. $$11000$$  after $$2$$  years and Rs. $$14000$$ after $$4$$ years of his service. What is his starting salary and what is the annual increment?
    Solution
    Let starting salary $$=\ x$$
    Increment every year $$=\ y$$
    $$ x\ + 2y\ =\ 11,000\quad$$                 ....... eq(1)
    $$ x\ +\ 4y\ =\ 14,000$$                     ......eq(2)
    Substract eq(1) from eq(2)
    $$2y\ =\ 3,000\\ y\ =\ 1500$$
     Substitute $$ y =\ 1500$$  in eq(1), we get $$x\ =\ 11,000\ -\ 3,000$$
    $$ x\ =\ 8,000$$
    starting salary$$\ =\ 8,000$$
     Increment $$\ = \ 1500$$
  • Question 4
    1 / -0
    Solve graphically the simultaneous equations given below. Take the scale as $$1 \ \mathrm{cm} = 1$$ unit on both the axes.
    $$ x - 2y - 4=0 $$
    $$ 2x + y= 3 $$
    Solution
    Plotting $$x-2y-4=0$$
    For $$x=0$$ we get $$y=-2$$
    For $$y=0$$ we get $$x=4$$
    Join the two points $$(0,-2)$$ and $$(4,0)$$ by drawing line.
    Plotting  $$2x+y=3$$
    For $$x=0$$ we get $$y=3$$
    For $$y=0$$ we get $$x=1.5$$
    Join the two points $$(0,3)$$ and $$(1.5,0)$$ by drawing line.
    the point of intersection of both lines is $$(2,-1)$$

  • Question 5
    1 / -0
    Solve the given pair of equations by substitution method:
    $$x\, +\, 5y\, =\, 18$$
    $$3x\, +\, 2y\, =\, 41$$
    Solution
    We have, $$x+5y =18\Rightarrow x = 18-5y$$ ..........(1)
    and $$3x+2y=41$$.......(2)
    Now substitute value x in terms of y from (1) to (2)
    $$\Rightarrow 3(18-5y)+2y=41$$
    $$\Rightarrow 54-15y+2y=41$$
    $$\Rightarrow 15y-2y=54-41$$
    $$\Rightarrow 13y=13\Rightarrow y=\dfrac{13}{13}=1$$
    So $$x =18-5y=18-5(1)=13$$
    Hence solution set is $$(x,y)=(13,1)$$
  • Question 6
    1 / -0
    Draw the graph of $$ 2x - y -1=0 $$ and $$ 2x + y= 9 $$ on the same graph. Use $$2\ \mathrm{ cm} = 1$$ unit on both axes.
    Write down the co-ordinates of the point of intersection of the two lines.
    Solution

    Plotting $$2x-y-1=0$$ and $$2x+y=9$$ in the graph, we get
    the point of intersection as $$(2.5,4)$$

  • Question 7
    1 / -0
    Solve the following simultaneous equations.
    $$3x+4y=18; \, \, 4x+3y=17$$
    Solution
    The given equations are
    $$3x+4y=18$$                              ...(i)
    $$4x+3y=17$$                           ...(ii)

    On multiplying (i) by 4 and (ii) by 3 and subtracting, we get
    $$12x+16y=72$$
    $$\underline {\underset {-}12x\underset {-}{+}9y=\underset{-}51}$$
               $$7y=21$$
    $$\Rightarrow  y=3$$

    On putting $$y=3$$ in (i), we get
    $$3x+12=18\Rightarrow 3x=6\Rightarrow x=2$$

    $$\therefore x=2,y=3$$       
  • Question 8
    1 / -0
    Solve the given pair of equations by substitution method:
    $$x\, +\, y\, =\, 11$$
    $$x\, -\, y\, =\, -3$$
    Solution
    We pick either of the equations and write one variable in terms of the other. 

    Let us consider the equation $$x-y = -3$$ and write it as 

    $$x = -3+y...........(1)$$

    Substitute the value of $$x$$ in Equation $$x+y = 11$$. We get

    $$-3+y+y = 11$$

    i.e. $$-3+y+y = 11$$

    i.e. $$-3+2y = 11$$

    i.e. $$2y = 14$$

    Therefore, $$y = 7$$

    Substituting this value of $$y$$ in Equation (1), we get

    $$x = -3+7=4$$

    Hence, the solution is $$x = 4, y = 7$$.
  • Question 9
    1 / -0
    Solve the given pair of equations by substitution method:
    $$4a\, -\, b\, =\, 10$$
    $$2a\, +\, 3b\, =\, 12$$
    Solution
    We have, $$4a-b=10\Rightarrow  b=4a-10$$.........(1)
    and $$2a+3b=12$$........(2)
    Now substitute value of b in terms of a in (2)
    $$\Rightarrow 2a+3(4a-10)=12$$
    $$\Rightarrow 2a+12a-30=12$$
    $$\Rightarrow 14a=12+30=42\Rightarrow a=\dfrac{42}{14}=3$$
    So $$b=4a-10=4(3)-10=12-10=2$$

    Hence option 'D' is correct choice 
  • Question 10
    1 / -0
    Solve the given pair of equations by substitution method:
    $$x\, -\, 4y\, =\, -8$$
    $$x\, -\, 2y\, =\, 0$$
    Solution
    We have, $$x-4y =-8\Rightarrow x = 4y-8$$ ..........(1)
    and $$x-2y=0$$.......(2)
    Now substitute value of x in terms of y from (1) to (2)
    $$\Rightarrow 4y-8-2y=0$$
    $$\Rightarrow 2y=8$$
    $$\Rightarrow y=\dfrac{8}{2}=4$$
    So $$x =4y-8=4(4)-8=8$$
    Hence solution set is $$(x,y)=(8,4)$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now