Self Studies

Pair of Linear Equations in Two Variables Test - 26

Result Self Studies

Pair of Linear Equations in Two Variables Test - 26
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Solve the given pair of equations by substitution method:
    $$2a\, +\, 3b\, =\, 6$$
    $$3a\, +\, 5b\, =\, 15$$
    Solution
    We pick either of the equations and write one variable in terms of the other. 

    Let us consider the equation $$2a+3b=6$$ and write it as 

    $$b=\frac { 6-2a }{ 3 } .........(1)$$

    Substitute the value of $$b$$ in Equation $$3a+5b=15$$. We get

    $$3a+5\left( \frac { 6-2a }{ 3 }  \right) =15\\ \Rightarrow 9a+5\left( 6-2a \right) =45\\ \Rightarrow 9a+30-10a=45\\ \Rightarrow -a=45-30\\ \Rightarrow a=-15$$

    Therefore, $$a=-15$$

    Substituting this value of $$a$$ in Equation (1), we get

    $$b=\frac { 6-(-30) }{ 3 }$$
    $$b=\frac { 36 }{ 3 }=12$$

    Hence, the solution is $$a=-15, b=12$$.
  • Question 2
    1 / -0
    Solve the given pair of equations by substitution method:
    $$x\, +\, y\, =\, 0$$
    $$y\, -\, x\, =\, 6$$
    Solution
    We have, $$x+y =0\Rightarrow x = -y$$ ..........(1)
    and $$y-x=6$$.......(2)
    Now substitute value of x in terms of y from (1) to (2)
    $$\Rightarrow y-(-y)=6$$
    $$\Rightarrow y+y=6$$
    $$\Rightarrow 2y=6$$
    $$\Rightarrow y=\dfrac{6}{2}=3$$
     $$x =-y=-(3)=-3$$
    Hence solution set is $$(x,y)=(-3,3)$$
  • Question 3
    1 / -0
    A particular work can be completed by $$6$$ men and $$6$$ women in $$24$$ days; whereas the same work can be completed by $$8$$ men and $$12$$ women in $$15$$ days, according to the amount of work done , one man is equivalent to how many women?
  • Question 4
    1 / -0
    Solve following pair of equations by equating the coefficient method:
    $$2x\, -\, y\, =\, 9$$
    $$3x\, -\, 7y\, =\, 19$$
    Solution
    Multiply the equation $$2x-y=9$$ by $$7$$ to make the coefficients of $$y$$ equal. Then we get the equations:

    $$14x-7y=63.........(1)$$

    $$3x-7y=19.........(2)$$

    Subtract Equation (2) from Equation (1) to eliminate $$y$$, because the coefficients of $$y$$ are the same. So, we get

    $$(14x-3x)+(-7y+7y)=63-19$$

    i.e. $$11x = 44$$

    i.e. $$x = 4$$

    Substituting this value of $$x$$ in (2), we get

    $$12-7y=19$$

    i.e. $$-7y=19-12$$

    i.e. $$-7y=7$$

    i.e. $$y=-1$$

    Hence, the solution of the equations is $$x = 4, y = -1$$.
  • Question 5
    1 / -0
    Solve the following pair of simultaneous equations:
    $$\displaystyle \frac{8}{x}\, -\, \frac{9}{y}\, =\, 1;\,\frac{10}{x}\, +\, \frac{6}{y}\, =\, 7$$
    Solution
    Let $$\dfrac{1}{x} = a$$ and $$\dfrac{1}{y} = b$$
    We have, $$8a -9b = 1$$ ...$$(1)$$
    $$10a +6b = 7$$  ...$$(2)$$
    Multiplying $$(1)$$ by $$10$$ and $$(2)$$ by $$8$$
    We get,
    $$80a - 90b = 10$$
    $$80a + 48b = 56$$
    Subtracting, we get $$-138b = -46$$
    $$\therefore b = \dfrac{1}{3}$$.
    Substituting in $$(1)$$ or $$(2)$$,  we get $$a = \dfrac{1}{2}$$

    So, $$x =2$$ and $$y = 3$$.
    Option $$A$$
  • Question 6
    1 / -0
    Solve the following pair of simultaneous equations:
    $$\displaystyle \frac{1}{x}\, +\, \frac{1}{y}\, =\, 5\,;\, \frac{1}{x}\, -\, \frac{1}{y}\, =\, 1$$
    Solution
    Let $$\dfrac{1}{x} = u$$ and $$\dfrac{1}{y} = v$$
    So, it becomes $$u + v = 5$$ and $$u - v = 1$$
    Adding the both equations, $$2u = 6$$ and $$u = 3$$.
    Substituting $$u$$ in either of the equations, we get $$v = 2$$.
    So, $$\dfrac{1}{x} = 3$$ and $$\dfrac{1}{y} = 2$$

    $$x = \dfrac{1}{3}$$ and $$y = \dfrac{1}{2}$$.

    Option $$C$$
  • Question 7
    1 / -0
    Solve the following pair of simultaneous equations:
    $$4x\, -\, 3y\, =\, 8$$
    $$3x\, -\, 4y\, =\, - 1$$
    Solution
    Multiply the equation $$4x-3y=8$$ by $$3$$ and equation $$3x-4y=-1$$ by $$4$$ to make the coefficients of $$x$$ equal. Then we get the equations:

    $$12x-9y=24.........(1)$$

    $$12x-16y=-4.........(2)$$

    Subtract Equation (2) from Equation (1) to eliminate $$x$$, because the coefficients of $$x$$ are the same. So, we get

    $$(12x-12x)+(-9y+16y)=24+4$$

    i.e. $$7y =28$$

    i.e. $$y =4$$

    Substituting this value of $$y$$ in the equation $$4x-3y=8$$, we get

    $$4x-12=8$$

    i.e. $$4x=20$$

    i.e. $$x=5$$

    Hence, the solution of the equations is $$x = 5, y =4$$.
  • Question 8
    1 / -0
    Solve the following pair of simultaneous equations:
    $$\displaystyle\,3x\, +\, \frac{1}{y}\, =\, 13\, ;\, \frac{2}{y}\, -\, x\, =\, 5$$
    Solution
    The equation $$3x +\frac { 1 }{ y } =13$$ can be solved as: 

    $$3x+\frac { 1 }{ y } =13\\ \Rightarrow \frac { 3xy+1 }{ y } =13\\ \Rightarrow 3xy+1=13y\quad .........(1)$$

    The equation $$\frac { 2 }{ y }-x =5$$ can be solved as: 

    $$\frac { 2 }{ y }-x =5\\ \Rightarrow \frac { 2-xy }{ y } =5\\ \Rightarrow 2-xy=5y\quad .........(2)$$

    Multiply the equation 2 by $$3$$. Then we get:

    $$-3xy+6=15y.........(3)$$

    Add equations 1 and 3 to eliminate $$xy$$, because the coefficients of $$xy$$ are opposite. So, we get

    $$(3xy-3xy)+(1+6)=13y+15y$$

    i.e. $$28y=7$$
     
    i.e. $$y=\frac { 1 }{ 4 }$$

    Substituting this value of $$y$$ in the equation 1, we get

    $$3x\left( \frac { 1 }{ 4 }  \right) +1=13\left( \frac { 1 }{ 4 }  \right) \\ \Rightarrow \frac { 3 }{ 4 } x+1=\frac { 13 }{ 4 } \\ \Rightarrow \frac { 3 }{ 4 } x=\frac { 13 }{ 4 } -1\\ \Rightarrow \frac { 3 }{ 4 } x=\frac { 9 }{ 4 } \\ \Rightarrow 3x=9\\ \Rightarrow x=3$$

    Hence, the solution of the equations is $$x=3,y=\frac { 1 }{ 4 }$$.
  • Question 9
    1 / -0
    Solve the following pair of simultaneous equations:
    $$\displaystyle \frac{6}{x}\, -\, \frac{2}{y}\, =\, 1\,;\, \frac{9}{x}\, -\, \frac{6}{y}\,=\, 0$$
    Solution
    The equation $$\cfrac { 6 }{ x } -\cfrac { 2 }{ y } =1$$ can be solved as: 

    $$\cfrac { 6 }{ x } -\cfrac { 2 }{ y } =1\\ \Rightarrow \cfrac { 6y-2x }{ xy } =1\\ \Rightarrow 6y-2x=xy\quad .........(1)$$

    The equation $$\cfrac { 9 }{ x } -\cfrac { 6 }{ y } =0$$ can be solved as: 

    $$\cfrac { 9 }{ x } -\cfrac { 6 }{ y } =0\\ \Rightarrow \cfrac { 9y-6x }{ xy } =0\\ \Rightarrow 9y-6x=0\quad .........(2)$$

    Multiply the equation 1 by $$3$$.Then we get:

    $$18y-6x=3xy.........(3)$$

    Subtract equation 2 from equation 3 to eliminate $$x$$, because the coefficients of $$x$$ are same. So, we get

    $$(18y-9y)+(-6x+6x)=3xy-0$$

    i.e. $$9y=3xy$$

    i.e. $$9=3x$$
     
    i.e. $$x=3$$

    Substituting this value of $$x$$ in the equation 1, we get

    $$6y-6=3y$$ 

    i.e. $$3y=6$$
     
    i.e. $$y=2$$ 
     
    Hence, the solution of the equations is $$x=3 ,y=2$$.
  • Question 10
    1 / -0
    Solve the following pair of simultaneous equations:
    $$\displaystyle \frac{x}{3}\, =\, \frac{y}{2}\,;\, \frac{2x}{3}\, -\, \frac{y}{2}\, =\, 2$$
    Solution
    The equation $$\frac { x }{ 3 } =\frac { y }{ 2 }$$ can be rewritten as: 

    $$\frac { x }{ 3 } =\frac { y }{ 2 } \\ \Rightarrow 2x=3y\\ \Rightarrow 2x-3y=0\quad .........(1)$$

    The equation $$\frac { 2x }{ 3 } -\frac { y }{ 2 }=2$$ can be solved as: 

    $$\frac { 2x }{ 3 } -\frac { y }{ 2 } =2\\ \Rightarrow \frac { 4x-3y }{ 6 } =2\\ \Rightarrow 4x-3y=12\quad .........(2)$$

    Subtract Equation 2 from equation 1 to eliminate $$y$$, because the coefficients of $$y$$ are the same. So, we get

    $$(4x-2x)+(-3y+3y)=12-0$$

    i.e. $$2x=12$$

    i.e. $$x=6$$

    Substituting this value of $$x$$ in the equation 1, we get

    $$12-3y=0$$

    i.e. $$3y=12$$

    i.e. $$y=4$$

    Hence, the solution of the equations is $$x =6, y =4$$.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now