Self Studies

Pair of Linear Equations in Two Variables Test - 28

Result Self Studies

Pair of Linear Equations in Two Variables Test - 28
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    $$A$$ is $$25$$ years older than $$B$$. In $$15$$ years, $$A$$ will be twice of $$B$$. Find the present ages of $$A$$ and $$B$$.
    Solution
    Let the present age of $$A$$ be $$x$$ and the present age of $$B$$ be $$y$$. 

    It is given that $$A$$  is $$25$$ years older than $$B$$ that is: 

    $$x=y+25$$
    $$x-y=25..........(1)$$ 

    Also, In $$15$$ years, $$A$$ will be twice of $$B$$ that is: 

    $$x+15=2(y+15)$$
    $$x+15=2y+30$$
    $$x-2y=30-15$$
    $$x-2y=15..........(2)$$

    Now subtract equation 1 from equation 2 to eliminate $$x$$, because the coefficients of $$x$$ are same. So, we get

    $$(x-x)+(-2y+y)=15-25$$

    i.e. $$-y=-10$$

    i.e. $$y=10$$

    Substituting this value of $$y$$ in (1), we get

    $$x-10=25$$

    i.e. $$x=25+10=35$$

    Hence, the present age of $$A$$ is $$35$$ years and the present age of $$B$$ is $$10$$ years.
  • Question 2
    1 / -0
    A man is 24 years older than his son. 12 years ago, he was five times as old as his son. Find the present ages of both.
    Solution
    Let the present age of the father be $$x$$ years and the present age of the son be $$y$$ years. 

    It is given that the man is $$24$$ years older than his son that is: 

    $$x=y+24$$
    $$\Rightarrow x-y=24\quad ..........(1)$$ 

    Also, $$12$$  years ago, he was five times as old as his son that is: 

    $$(x-12)=5(y-12)$$
    $$\Rightarrow x-12=5y-60$$
    $$\Rightarrow x-5y=-60+12$$
    $$\Rightarrow x-5y=-48\quad .......(2)$$

    On subtracting $$(1)$$ from $$(2)$$, we get: 

    $$(x-x)+(-5y+y)=-24-48$$

    $$\Rightarrow -4y=-72$$

    $$\Rightarrow y=18$$

    Substituting this value of $$y$$ in $$(1)$$, we get:

    $$x-18=24$$

    $$\Rightarrow x=24+18=42$$

    Hence, the present age of the father is $$42$$ years and the present age of the son is $$18$$ years.
  • Question 3
    1 / -0
    Find the fraction such that it becomes $$\displaystyle \frac{1}{2}$$ if 1 is added to the numerator, and $$\displaystyle \frac{1}{3}$$ if 1 is added to the denominator.
    Solution
    Let the fraction be $$\dfrac { x }{ y }$$
    $$\therefore \dfrac { x+1 }{ y }  = \dfrac { 1 }{ 2 } $$            ...(1)  

    $$\dfrac { x }{ y+1 }  = \dfrac { 1 }{ 3 }$$               ...(2)
    So from $$1$$ we get, $$2x+2 = y  $$            ...(3)
    From $$2$$ we get, $$3x = y+1 $$      ...(4)
    Substitute $$eq(3)$$ in $$eq(4)$$, we get  $$3x = 2x+2+1$$
    $$ x = 3\\ y = 2x+2 = 8$$

    The fraction is $$\dfrac { 3 }{ 8 }$$
  • Question 4
    1 / -0
    Solve the following pair of equations:
    $$7x+6y= 71$$
    $$5x-8y= -23$$
    Solution
    $$\\ 7x+6y=71;\\ y=\dfrac{71-7x}{6};\\$$
    Substituting:
    $$5x-8\left(\dfrac{71-7x}{6}\right)=-23$$ 
    $$\Rightarrow 30x-568+56x=-138$$
    $$\Rightarrow 86x=430$$
    $$\Rightarrow x=5$$
    Resubstituting the value of $$x$$, we get
    $$y=\dfrac{71-35}{6}=6$$
    Therefore
    $$x=5, y=6$$
  • Question 5
    1 / -0
    Solve the following pair of equations using substitution method:
    $$\displaystyle \frac{5y}{2}-\displaystyle \frac{x}{3}= 8$$
    $$\displaystyle \frac{y}{2}+\displaystyle \frac{5x}{3}= 12$$
    Solution
    $$\dfrac { 5y }{ 2 } -\dfrac { x }{ 3 } =8\quad ...(1)\\ \dfrac { y }{ 2 } +\dfrac { 5x }{ 3 } =12\quad ...(2)$$

    Let $$\dfrac{y}{2} = a$$ and $$\dfrac{x}{3} = b$$
    So, the original equations reduce to
    $$5a - b = 8$$ ...$$(1)$$
    $$a + 5b = 12$$ ...$$(2)$$
    From $$(1), b = 5a - 8$$

    Substituting $$b = 5a - 8$$ in $$(2)$$, we get
    $$a + 5(5a - 8) = 12$$
    $$a + 25a - 40 = 12$$
    $$26a = 52$$
    $$a = 2$$

    So, $$b = 5a - 8$$
    $$b = 10 - 8 = 2$$

    But $$\dfrac{y}{2} = a$$ or $$y = 2a = 4$$
    $$\dfrac{x}{3} = b$$ or $$x = 3b = 6$$

    $$x = 6, y = 4$$
    Option $$B$$.
  • Question 6
    1 / -0
    Solve the following pairs of equations, graphically:
    $$3x - 4y = 1$$ and $$x - 2y + 1 = 0$$
    Solution
    The solution set of equation $$3x-4y=1$$ is as follows:

    If $$x=-1$$ then

    $$3\times (-1)-4y=1\\ \Rightarrow -3-4y=1\\ \Rightarrow -4y=1+3\\ \Rightarrow -4y=4\\ \Rightarrow y=-1$$

    If $$x=3$$ then

    $$3\times (3)-4y=1\\ \Rightarrow 9-4y=1\\ \Rightarrow -4y=1-9\\ \Rightarrow -4y=-8\\ \Rightarrow y=2$$

    The required points are $$(-1,-1),(3,2)$$.

    Also, the solution set of equation $$x-2y+1=0$$ or $$x-2y=-1$$ is as follows:

    If $$x=1$$ then

    $$1-2y=-1\\ \Rightarrow -2y=-1-1\\ \Rightarrow -2y=-2\\ \Rightarrow y=1$$

    If $$x=3$$ then

    $$3-2y=-1\\ \Rightarrow -2y=-1-3\\ \Rightarrow -2y=--4\\ \Rightarrow y=2$$

    The required points are $$(1,1),(3,2)$$.

    Plot all the above points in the graph. Since the point of intersection in the graph is $$(3,2)$$.

    Hence the solution is $$x=3,y=2$$.

  • Question 7
    1 / -0
    Solve the following pairs of equations, graphically:
    $$3x - 2y = 0$$ and $$y + 3 = 0$$
    Solution
    The solution set of equation $$3x-2y=0$$ is as follows:

    If $$x=0$$ then

    $$3\times 0-2y=0\\ \Rightarrow 0-2y=0\\ \Rightarrow -2y=0\\ \Rightarrow y=0$$

    If $$x=-2$$ then

    $$3\times (-2)-2y=0\\ \Rightarrow -6-2y=0\\ \Rightarrow -2y=6\\ \Rightarrow y=-3$$

    The required points are $$(0,0),(-2,-3)$$.

    Another equation of line given is $$y+3=0$$ or $$y=-3$$.

    Plot all the above points in the graph. Since the point of intersection in the graph is $$(-2,-3)$$.

    Hence the solution is $$x=-2,y=-3$$.

  • Question 8
    1 / -0
    Solve the following pairs of equations, graphically:
    $$x + y = 0$$ and $$y = 5$$
    Solution
    The solution set of equation $$x+y=0$$ is as follows:
    If $$x=0$$ then,
    $$0+y=0\\ \Rightarrow y=0$$

    If $$x=-5$$ then
    $$-5+y=0\\ \Rightarrow y=5$$

    The required points to plot are $$(0,0),(-5,5)$$.

    Another equation of a line given is $$y=5$$.

    Plot all the above points of the line $$x+y=0$$ and the line parallel to $$x$$ axis that is $$y=5$$ in the graph. Since the point of intersection in the graph is $$(-5,5)$$.

    Hence the solution is $$x=-5,y=5$$.

  • Question 9
    1 / -0
    Solve the following pair of linear (simultaneous) equations by the method of elimination :
    $$x+y= 7$$
    $$5x+12y= 7$$
    Solution
    $$x+y=7$$                .... (1)
    $$5x+12y=7$$           ....(2)

    Multiply eq. (1) by 5, we get
    $$5x+5y=35$$        ....(3)

    Subtracting eq(2) from eq.(3)
    $$5x+5y=35$$ 
    $$5x+12y=7$$
    $$-$$  $$-$$         $$-$$
    ---------------------
    $$-7y=28$$
    $$y=-4$$

    Substituting value of $$y$$ in eq,(1), we get,
    $$x-4=7$$
    $$x=11$$
  • Question 10
    1 / -0
    Solve the following pairs of equations, graphically :
    $$4x + 3y = 1$$  and $$2x - y = 3$$
    Solution
     Given,
    $$ 4x + 3y = 1$$
    $$\Rightarrow y = \dfrac {1-4x}{3} $$

    Substituting different values of $$ x $$ to get corresponding values of $$ y $$, we get

    $$ ( 0, \dfrac {1}{3}), (1, -1), (-1, \dfrac {5}{3}), (2, -\dfrac {7}{3}), (-2,3) $$

    Plotting these points on the graph, we get the graph of the equation, $$  4x + 3y = 1 $$

    Similarly,
     Given second eqn,
    $$ 2x-y= 3 $$
    $$\Rightarrow y = 2x - 3$$

    Substituting different values of $$ x $$ to get corresponding values of $$ y $$, we get

    $$ ( 1, -1), (0,-3), (2,1), (-1,-5), (3,3) $$

    Plotting these points on the graph, we get the graph of the equation, $$ 2x-y= 3 $$

    The point of intersection of the graphs of the lines is the solution of the equations which is $$ (1,-1) $$

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now