Self Studies

Pair of Linear Equations in Two Variables Test - 30

Result Self Studies

Pair of Linear Equations in Two Variables Test - 30
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Solve: $$4x+\displaystyle \frac{6}{y}= 15$$ and $$6x-\displaystyle \frac{8}{y}= 14$$. Hence, find $$a$$ if $$y= ax-2$$
    Solution
    The equation $$4x +\frac { 6 }{ y } =15$$ can be solved as: 

    $$4x+\frac { 6 }{ y } =15\\ \Rightarrow \frac { 4xy+6 }{ y } =15\\ \Rightarrow 4xy+6=15y\quad .........(1)$$

    The equation $$6x -\frac { 8 }{ y } =14$$ can be solved as: 

    $$6x-\frac { 8 }{ y } =14\\ \Rightarrow \frac { 6xy-8}{ y } =14\\ \Rightarrow 6xy-8=14y\quad .........(2)$$

    Multiply the equation 1 by $$3$$ and equation 2 by $$2$$. Then we get:

    $$12xy+18=45y.........(3)$$

    $$12xy-16=28y.........(4)$$

    Subtract equation 4 from equation 3 to eliminate $$xy$$, because the coefficients of $$xy$$ are same. So, we get

    $$(12xy-12xy)+(18+16)=45y-28y$$

    i.e. $$17y=34$$
     
    i.e. $$y=2$$

    Substituting this value of $$y$$ in the equation 1, we get

    $$8x+6=30 \\ \Rightarrow 8x=30-6 \\ \Rightarrow 8x=24 \\ \Rightarrow x=3$$

    Therefore, the solution of the equations is $$x=3,y=2$$.

    Now substitute the values of $$x$$ and $$y$$ in $$y=ax-2$$ as shown below:

    $$2=3a-2$$
    $$3a=2+2$$
    $$3a=4$$
    $$a=\frac { 4 }{ 3 } =1\frac { 1 }{ 3 }$$
     
    Hence, $$a=1\frac { 1 }{ 3 }$$.
  • Question 2
    1 / -0
    Solve the following pair of equations:

    $$2x-3y-3= 0$$, $$\displaystyle \frac{2x}{3}+4y+\displaystyle \frac{1}{2}= 0$$
    Solution
    $$2x-3y-3= 0$$  ...... (1)

    $$\displaystyle \frac{2x}{3}+4y=-\displaystyle \frac{1}{2}$$ ...... (2)

    $$2x-3y=3;$$

    $$ x=\dfrac{3+3y}{2}$$    .....(3)

    Substituting in the 2nd equation
    $$ \dfrac{-1}{2}=\dfrac{2}{3} \times \dfrac{3+3y}{2} +4y$$

    $$ 5y=-\dfrac{3}{2} \implies y=\dfrac{-3}{10}$$

    Put the value of $$y$$ in (3)

    $$x=\dfrac{3+3(\dfrac{-3}{10})}{2} \implies x=\dfrac{21}{20}$$

    $$\therefore x=\dfrac{21}{20} \quad and \quad  y=\dfrac{-3}{10}$$
  • Question 3
    1 / -0
    Pooja and Ritu can do a piece of work in $$\displaystyle 17\frac{1}{7}$$ days. If one day work of Pooja is three fourth of one day work of Ritu then find in how many days each alone will do the same work.
    Solution
    Let the work done by pooja in one day be $$ 1/x $$  and work done by Ritu in one day be $$1/y.$$ 
    Therefore, according to the question total work done by both in one day,

    $$\\ 1/x+1/y=\dfrac{1}{17\dfrac{1}{7}} = 7/120$$.....(1)

    Also, one day work of Pooja is three fourth of one day work of Ritu
    $$\\ 1/x=3/4y$$

    Substituting above equation in equation (1) , we get
    $$y=40$$
    Substituting $$y=40$$ in equation (1) we get
    $$x=30$$
    Hence pooja will complete the work in $$40$$ days whereas ritu in $$30$$ days


  • Question 4
    1 / -0
    Solve the following equations by substitution method.
    $$2x+y=-2;\, \, 3x-y=7$$
    Solution
    $$ 2x+y =-2; \, \, 3x-y =7 $$
    $$ y = -2x -2 $$  
    Put it in second equation.
    $$ 3x -(-2x-2) =7 $$
    $$ 5x +2 = 7 $$
    $$ x =1 $$
    $$ y = -2x-2 = -2 (1)-2 = -4 $$
    $$ x =1$$ and $$y = -4 $$
  • Question 5
    1 / -0
    Solve the following equations by substitution method.
    $$2x-3y=14; \, \, 5x+2y=16$$
    Solution
    $$ 2x-3y=14; \, \, 5x+2y=16 $$

    $$ x = \dfrac {14+3y}{2} $$  Put it in second equation.

    $$ 5 \times \dfrac {14+3y}{2} +2y =16 $$
    $$ 70 +15y +4y = 32 $$
    $$ 19y = -38 $$
    $$ y = -2 $$

    $$ x = \dfrac {14+3y}{2} = \dfrac {14+3(-2)}{2} = 4 $$

    $$ x = 4$$ and $$y = -2$$
  • Question 6
    1 / -0
    Solve the following equations by substitution method.
    $$x-2y+2=0; \, \, x+2y=10$$
    Solution
    $$x-2y+2=0 $$             ....(i)
    $$ x+2y=10$$          ....(ii)
    We pick either of the equations and write one variable in terms of the other.
    Let us consider the Equation (i) and write it as
    $$x=2y-2$$                 .........(iii)
    Substitute the value of $$x=2y-2$$ in Equation (ii). We get
    $$ 2y-2+2y=10$$
    $$ \Rightarrow 4y=12$$
    $$\Rightarrow y=3 $$
    Substituting this value of $$y=3$$ in Equation (iii), we get
    $$x=2(3)-2=4$$
    $$\therefore x=4 , y=3$$

  • Question 7
    1 / -0
    Solve the following simultaneous equations by the method of equating coefficients.$$3x-4y=7;\, \, 5x+2y=3$$ .
    Solution
    $$3x-4y=7$$                              ...(i)
    $$5x+2y=3$$                           ...(ii)
    On multiplying (i) by 5 and (ii) by 3, we get
    $$15x-20y=35$$
    $$\underline {\underset {-}15x\underset {-}{+}6y=\underset{-}9}$$
              $$-26y=26$$
    $$\therefore y=-1$$
    On putting $$y=-1$$ in (i), we get
    $$3x-4(-1)=7$$
    $$x=1$$
    $$\therefore x=1,y=-1$$    
  • Question 8
    1 / -0
    Find the values of $$(x+y)$$ and $$(x-y) $$without actually solving for $$x$$ and $$y$$. 
    $$13x+15y=114 \quad and  \quad15x+13y=110$$
    Solution
    $$13x+15y=114$$                              ...(i)

    $$15x+13y=110$$                           ...(ii)

    On adding (i) and (ii) , we get

    $$28x+28y=224$$

    $$\Rightarrow x+y=\frac {224}{28} =8$$

    On subtracting (i) from (ii) , we get

    $$2x-2y=-4$$

    $$\Rightarrow x-y=-\frac 42 =-2$$.
  • Question 9
    1 / -0
    Solve the following equations by substitution method:
    $$5x-2y=13; \, \, 4x+3y=15$$
    Solution
    We pick either of the equations and write one variable in terms of the other. 

    Let us consider the equation $$5x-2y=13$$ and write it as 

    $$x=\frac { 13+2y }{ 5 }$$ 

    Substitute the value of $$x$$ in equation $$4x+3y=15$$. We get

    $$4\left( \frac { 13+2y }{ 5 }  \right) +3y=15\\ \Rightarrow 52+8y+15y=75\\ \Rightarrow 23y=23\\ \Rightarrow y=1$$

    Therefore, $$y = 1$$

    Substituting this value of $$y$$ in the equation $$5x-2y=13$$, we get

    $$5x-2=13$$
    $$5x=13+2=15$$
    $$x=3$$

    Hence, the solution is $$x = 3, y = 1$$.
  • Question 10
    1 / -0
    Solve the following equations by substitution method.
    $$3y-2x=9; \, \, 2x+5y=15$$
    Solution
    $$ 3y -2x =9; \, \, 2x +5y =15 $$
    $$ y = \dfrac {9+2x}{3} $$  Put it in second equation.

    $$ 2x + 5 \times \dfrac {9+2x}{3} =15 $$

    $$ 6x +45 +10x = 45 $$
    $$ 16x =0 $$
    $$ \boxed{x =0} $$

    $$y = \dfrac {9+2x}{3} = \dfrac {9+2 (0)}{3} = 3 \\ \boxed{y=3}$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now