Self Studies

Pair of Linear Equations in Two Variables Test - 33

Result Self Studies

Pair of Linear Equations in Two Variables Test - 33
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Solve: $$3\left ( 2x+y \right )= 7xy$$ and $$3\left ( x+3y \right )= 11xy$$;  
    where, $$x\neq 0, y\neq 0$$
    Solution
    Dividing both the equations by xy, we get:
    $$ \dfrac3x+\dfrac6y=7;\\ \dfrac3y+\dfrac9x=11 $$
    Multiplying the 2nd equation by -2 and Adding
    $$ \dfrac{ -15 }{x}= -15;\\ y= \dfrac32 \quad and \quad x=1 $$
  • Question 2
    1 / -0
    Solve: $$4x+\displaystyle \frac{6}{y}= 15$$ and $$6x-\displaystyle \frac{8}{y}= 14$$. Hence find the value of $$k$$, if $$y= kx-2$$.
    Solution
    The equation $$4x +\frac { 6 }{ y } =15$$ can be solved as: 

    $$4x+\frac { 6 }{ y } =15\\ \Rightarrow \frac { 4xy+6 }{ y } =15\\ \Rightarrow 4xy+6=15y\quad .........(1)$$

    The equation $$6x -\frac { 8 }{ y } =14$$ can be solved as: 

    $$6x-\frac { 8 }{ y } =14\\ \Rightarrow \frac { 6xy-8 }{ y } =14\\ \Rightarrow 6xy-8=14y\quad .........(2)$$

    Multiply the equation 1 by $$3$$ and equation 2 by $$2$$. Then we get the equations:

    $$12xy+18=45y.........(3)$$

    $$12xy-16=28y.........(4)$$

    Subtract equation 4 from equation 3 to eliminate $$xy$$, because the coefficients of $$xy$$ are same. So, we get

    $$(12xy-12xy)+(18+16)=45y-28y$$

    i.e. $$17y=34$$
     
    i.e. $$y=2$$

    Substituting this value of $$y$$ in the equation 1, we get

    $$8x+6=30 \\ \Rightarrow 8x=24 \\ \Rightarrow  x=3$$

    Therefore, the solution of the equations is $$x=3,y=2$$.

    Now Substitute the values of $$x$$ and $$y$$ in the equation $$y=kx-2$$ as follows:

    $$2=3k-2$$
    $$3k=4$$
    $$\Rightarrow k=\frac { 4 }{ 3 }$$ 

    Hence, $$k=\frac { 4 }{ 3 }$$.
  • Question 3
    1 / -0
    Solve the following simultaneous equations:
    $$12x+15y+18= 0$$, $$18x-7y+86= 0$$
    Solution
    We pick either of the equations and write one variable in terms of the other. 

    Let us consider the equation $$12x+15y+18=0$$ and write it as 

    $$x=\frac { -18-15y }{ 12 }..........(1)$$ 
     
    Substitute the value of $$x$$ in Equation $$18x-7y=-86$$. We get

    $$18\left( \frac { -18-15y }{ 12 }  \right) -7y=-86\\ \Rightarrow -54-45y-14y=-172\\ \Rightarrow -59y=-118\\ \Rightarrow y=2$$

    Therefore, $$y = 2$$

    Substituting this value of $$y$$ in Equation (1), we get

    $$x=\frac { -18-30 }{ 12 } =-\frac { 48 }{ 12 } =-4$$

    Hence, the solution is $$x = -4, y = 2$$.
  • Question 4
    1 / -0
    Solve the following pair of equations:
    $$3x\, -\, y\, =\, 23$$
    $$\displaystyle \frac{x}{3}\, +\, \displaystyle \frac{y}{4}\, =\, 4$$
    Solution
    We pick either of the equations and write one variable in terms of the other. 

    Let us consider the equation $$3x-y=23$$ and write it as 

    $$y=3x-23...........(1)$$

    Substitute the value of $$y$$ in Equation $$\frac { x }{ 3 } +\frac { y }{ 4 } =4$$ or $$4x+3y=48$$. We get

    $$4x+3(3x-23)=48$$

    i.e. $$4x+9x-69=48$$

    i.e. $$13x=117$$

    i.e. $$x=9$$

    Therefore, $$x=-9$$

    Substituting this value of $$x$$ in equation 1, we get

    $$y=27-23$$

    i.e. $$y=4$$

    Hence, the solution is $$x = 9, y =4$$.
  • Question 5
    1 / -0
    Solve the following pair of equations:
    $$13 + 2y = 9x$$, $$3y = 7x$$
    Solution
    We pick either of the equations and write one variable in terms of the other. 

    Let us consider the equation $$3y=7x$$ and write it as 

    $$x=\frac { 3 }{ 7 }y..........(1)$$ 
     
    Substitute the value of $$x$$ in the equation $$13+2y=9x$$ or $$9x-2y=13$$. We get:

    $$9\left( \frac { 3 }{ 7 } y \right) -2y=13\\ \Rightarrow 27y-14y=91\\ \Rightarrow 13y=91\\ \Rightarrow y=7$$

    Therefore, $$y = 7$$

    Substituting this value of $$y$$ in Equation (1), we get

    $$x=\frac { 3 }{ 7 } \times 7=3$$

    Hence, the solution is $$x = 3, y = 7$$.
  • Question 6
    1 / -0
    Solve the following pairs of linear (simultaneous) equation by the method of elimination:
    $$x + y = 7$$, $$5x + 12y = 7$$
    Solution
    Multiply the equation $$x+y=7$$ by $$5$$ to make the coefficients of $$x$$ equal. Then we get the equations:

    $$5x+5y=35.........(1)$$

    $$5x+12y=7.........(2)$$

    Subtract Equation (2) from Equation (1) to eliminate $$x$$, because the coefficients of $$x$$ are the same. So, we get

    $$(5x-5x)+(5y-12y)=35-7$$

    i.e. $$7y=-28$$

    i.e. $$y = -4$$

    Substituting this value of $$y$$ in the equation $$x+y=7$$, we get

    $$x-4=7$$

    i.e. $$x=11$$

    Hence, the solution of the equations is $$x = 11, y = -4$$.
  • Question 7
    1 / -0
    If $$1$$ is added to each of the two certain numbers, their ratio is $$1:2$$; and if $$5$$ is subtracted from each of the two numbers, their ratio becomes $$5:11$$. Find the numbers. 
    Solution
    Let the numbers be $$ x $$ and $$ y $$

    Given, if $$1  $$ is added to the numbers,  then ratio $$ = \dfrac {x + 1}{y + 1} = \dfrac {1}{2} $$
    $$ => 2x + 2 = y + 1 $$
    $$ => 2x - y = -1 $$      ...(1)

    Also, if  $$ 5  $$ is subtracted from the numbers,  then ratio $$ = \dfrac {x - 5}{y - 5} = \dfrac {5}{11} $$
    $$ => 11x - 55 = 5y - 25 $$
    $$ => 11x - 5y = 30 $$      ...(2)

    Multiplying equation  $$(1) $$ with $$ 5 $$ we get, $$ 10x - 5y = -5 $$ ----- equation $$(3) $$

    Subtracting equation $$ (3) $$from $$ (1) $$, we get $$ x = 35 $$

    Substituting $$ x = 35 $$ in the equation $$ (1) $$, we get $$ 70 - y = -1 => y = 71$$

    Hence, the numbers are $$ 35 $$ and $$ 71 $$

  • Question 8
    1 / -0
    Solve the set of equations: $$3\left ( 2u+v \right )= 7uv$$ and $$3\left ( u+3v \right )= 11uv$$
    Solution
    The equation $$3(2u+v)=7uv$$ can be rewritten as $$6u+3v=7uv$$ and the equation $$3(u+3v)=11uv$$ can be rewritten as $$3u+9v=11uv$$. Then we get the equations:

    $$6u+3v=7uv.........(1)$$

    $$3u+9v=11uv.........(2)$$

    Multiply equation 2 by $$2$$:

    $$6u+18v=22uv.........(3)$$

    Subtract Equation 1 from equation 3 to eliminate $$u$$, because the coefficients of $$u$$ are the same. So, we get

    $$(6u-6u)+(18v-3v)=22uv-7uv$$

    i.e. $$-15v=-15uv$$

    i.e. $$u=1$$

    Substituting this value of $$u$$ in equation 1, we get

    $$6+3v=7v$$

    i.e. $$4v=6$$
     
    i.e. $$v=\frac { 3 }{ 2 }$$

    Hence, the solution of the equations is $$u=1,v=\frac { 3 }{ 2 }$$.
  • Question 9
    1 / -0
    Solve the following pair of equations :
    $$7x + 6y = 71$$
    $$5x - 8y = -23$$
    Solution
    Given equations are $$ 7x + 6y = 71 $$ --- (1)

      and $$ 5x - 8y = -23 $$  --- (2)


    Multiplying equation  $$

    (1) $$ with $$ 4 $$ we get, $$ 28x + 24y = 284 $$ ----- equation $$

    (3) $$

    Multiplying equation  $$

    (2) $$ with $$ 3 $$ we get, $$ 15x - 24y = - 69 $$ ----- equation $$ (4)

    $$

    Adding equations $$ (4) $$ and $$ (3) $$, we get $$ 43x = 215 => x = 5  $$

    Substituting $$x = 5 $$ in the equation $$ (2) $$, we get 

    $$ 5(5) - 8y = -23 => y = 6 $$

  • Question 10
    1 / -0
    Solve : $$\displaystyle \frac{9}{x}\, -\, \displaystyle \frac{4}{y}\, =\, 8$$ and $$\displaystyle \frac{13}{x}\, +\, \displaystyle \frac{7}{y}\, =\, 101$$
    Solution
    Let  $$\dfrac{1}{x}=a$$ and $$\dfrac{1}{y}=b$$
    $$\displaystyle \frac{9}{x}\, -\, \displaystyle \frac{4}{y}\, =\, 8$$ ......(i)
    $$\Rightarrow 9a-4b=8$$ .....(ii)
    $$\displaystyle \frac{13}{x}\, +\, \displaystyle \frac{7}{y}\, =\, 101$$ ......(iii)
    $$\Rightarrow 13a+7b=101$$ .....(iv)
    Multipliying equation (ii) by $$7$$ and (iv) by $$4$$, we get
    $$63a-28b=56$$
    $$52a+28b=404$$
                                
    $$115a     =460$$
    $$\Rightarrow a       =\dfrac{460}{115}$$
    $$\Rightarrow a      =4$$
    Putting the value in (ii), we get
    $$9a-4b=8$$ 
    $$\Rightarrow 9\times 4-4b=8$$
    $$\Rightarrow -4b=8-36$$
    $$\Rightarrow -4b=-28$$
    $$\Rightarrow b=7$$
    Now, resubstituting the value, we get
    $$a=\dfrac{1}{x}=4$$ $$\Rightarrow x=\dfrac{1}{4}$$
    Again, $$b=\dfrac{1}{y}=7$$ $$\Rightarrow y=\dfrac{1}{7}$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now