Self Studies

Pair of Linear Equations in Two Variables Test - 34

Result Self Studies

Pair of Linear Equations in Two Variables Test - 34
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Solve the following pair of equations :
    $$y = 2x - 6$$
    $$y = 0$$
    Solution
    Given equations are $$y=2x-6$$ ....(1) 
    and $$y=0$$ ....(2)
    Put the value of equation (2) in equation (1), we get
    $$0=2x-6$$
    $$\Rightarrow 2x=6$$
    $$\Rightarrow x=3$$
    Hence, option A is the correct answer.
  • Question 2
    1 / -0
    Solve the following pair of equations:
    $$3\, -\, (x\, -\, 5)\, =\, y\, +\, 2$$
    $$2\, (x\, +\, y)\, =\, 4\, -\, 3y$$
    Solution
    We pick either of the equations and write one variable in terms of the other. 

    Let us consider the equation $$3-(x-5)=y+2$$ and write it as 

    $$3-x+5=y+2$$
    or $$-x-y=-6$$
    or $$x+y=6$$
    or $$y=6-x...........(1)$$

    Now the equation $$2(x+y)=4-3y$$ can be rewritten as: 

    $$2x+2y=4-3y$$
    or $$2x+5y=4$$

    Substitute the value of $$y$$ in the equation $$2x+5y=4$$. We get

    $$2x+5(6-x)=4$$

    i.e. $$2x+30-5x=4$$

    i.e. $$-3x=-26$$

    i.e. $$x=\dfrac { 26 }{ 3 }$$
     
    Therefore, $$x=\dfrac { 26 }{ 3 }$$

    Substituting this value of $$x$$ in equation 1, we get

    $$y=6-\dfrac { 26 }{ 3 } =\dfrac { 18-26 }{ 3 } =-\dfrac { 8 }{ 3 }$$ 
     
    Hence, the solution is $$x=\dfrac { 26 }{ 3 } ,y=-\dfrac { 8 }{ 3 }$$.
  • Question 3
    1 / -0
    Solve : $$\displaystyle \frac{3}{x+y}+\displaystyle \frac{2}{x-y}= 2$$ and $$\displaystyle \frac{9}{x+y}-\displaystyle \frac{4}{x-y}= 1$$
    Solution
    Let $$\dfrac1{x+y}=X$$ and $$\dfrac1{x-y}=Y$$
    $$3X+2Y=2$$                       ...(i)
    $$9X-4Y=1$$                        ...(ii)

    On multiplying (i) by 3 and (ii) by 1 and subtracting, we get
    $$9X+6Y=6$$
    $$\underline {\underset {-}9X\underset {+}{-}4Y=\underset{-}1}$$
                 $$10Y=5$$

    $$\therefore Y=\dfrac12$$

    On putting $$Y=\dfrac12$$ in (i), we get
    $$3X+2\times\dfrac12=2\Rightarrow X=\dfrac13$$

    $$\therefore \dfrac1{x+y}=\dfrac13$$ and $$\dfrac1{x-y}=\dfrac12$$

    $$\Rightarrow x+y=3$$                  ...(iii)
    $$x-y=2$$                       ...(iv)

    On adding (iii) and (iv), we get
    $$2x=5\Rightarrow x=\dfrac52$$

    On putting $$x=\dfrac52$$ in (iii), we get

    $$\dfrac52+y=3\Rightarrow y=3-\dfrac52=\dfrac12$$

    $$\therefore x=\dfrac52, y=\dfrac12$$
  • Question 4
    1 / -0
    Solve for $$x$$ and $$y$$:
    $$mx \, -\, ny\, =\, m^{2}\, +\, n^{2}$$, $$x\, -\, y\, =\, 2n$$
    Solution
    The equations given are

    $$mx-ny=m^2+n^2...........(1)$$

    $$x-y=2n..........(2)$$

    We pick either of the equations and write one variable in terms of the other. 

    Let us consider the equation and write it as 

    $$x=2n+y$$ 

    Substitute the value of $$x$$ in equation 1. We get

    $$m\left( 2n+y \right) -ny=m^{ 2 }+n^{ 2 }\\ \Rightarrow 2mn+my-ny=m^{ 2 }+n^{ 2 }\\ \Rightarrow y\left( m-n \right) =m^{ 2 }+n^{ 2 }-2mn\\ \Rightarrow y\left( m-n \right) =\left( m-n \right) ^{ 2 }\\ \Rightarrow y=m-n$$

    Therefore, $$y = m-n$$

    Substituting this value of $$y$$ in the equation $$x=2n+y$$, we get

    $$x=2n+y=2n+m-n=m+n$$

    Hence, the solution is $$x = m+n, y = m-n$$.
  • Question 5
    1 / -0
    Solve the following pair of equations:
    $$2x\, -\, 3y\, -\, 3\, =\, 0$$
    $$\displaystyle \frac{2x}{3}\, +\, 4y\, +\, \displaystyle \frac{1}{2}\, =\, 0$$
    Solution
    We pick either of the equations and write one variable in terms of the other. 

    Let us consider the equation $$2x-3y-3=0$$ and write it as 

    $$y=\cfrac { 2x-3 }{ 3 }.......(1)$$

    Substitute the value of $$y$$ in the equation $$\cfrac { 2x }{ 3 } +4y+\cfrac { 1 }{ 2 } =0$$. We get

    $$\cfrac { 2x }{ 3 } +4y+\cfrac { 1 }{ 2 } =0\\ \Rightarrow \cfrac { 2x }{ 3 } +4\left( \cfrac { 2x-3 }{ 3 }  \right) +\dfrac { 1 }{ 2 } =0\\ \Rightarrow \cfrac { 2x }{ 3 } +\cfrac { 8x-12 }{ 3 } +\cfrac { 1 }{ 2 } =0\\ \Rightarrow \cfrac { 2x+8x-12 }{ 3 } +\dfrac { 1 }{ 2 } =0\\ \Rightarrow \cfrac { 10x-12 }{ 3 } +\dfrac { 1 }{ 2 } =0\\ \Rightarrow \cfrac { 2(10x-12)+3 }{ 6 } =0\\ \Rightarrow \cfrac { 20x-24+3 }{ 6 } =0\\ \Rightarrow 20x=21\\ \Rightarrow x=\cfrac { 21 }{ 20 }$$ 

    Substituting this value of $$x$$ in equation 1, we get

    $$y=\dfrac { 2\left( \dfrac { 21 }{ 20 }  \right) -3 }{ 3 } =\cfrac { 42-60 }{ 60 } =-\cfrac { 18 }{ 60 } =-\cfrac { 3 }{ 10 }$$  
     
    Hence, the solution is $$x=\cfrac { 21 }{ 20 } ,y=-\cfrac { 3 }{ 10 }$$.
  • Question 6
    1 / -0
    Solve, graphically, the following pairs of equations:
    $$2x + y = 23$$
    $$4x - y = 19$$
    Solution

  • Question 7
    1 / -0
    Solve the following pair of equations:
    $$\displaystyle \frac{a}{x}\, -\, \displaystyle \frac{b}{y}\, =\, 0$$
    $$\displaystyle \frac{ab^{2}}{x}\, +\, \displaystyle \frac{a^{2}b}{y}\, =\, a^{2} \, +\, b^{2}$$
    Solution
    Given equations are 
    $$\dfrac {a}{x}-\dfrac {b}{y}=0$$ ....(1)
    and $$\dfrac {ab^2}{x}+\dfrac {a^2b}{y}=a^2+b^2$$ ....(2)
    Multiply equation (1) by $$a^2$$, we get
    $$\dfrac {a^3}{x}-\dfrac {a^2b}{y}=0$$ ....(3)
    Add equations (2) and (3),
    $$\dfrac {1}{x}\left (ab^2+a^3\right)=a^2+b^2$$
    $$\Rightarrow \dfrac {1}{x}[a(a^2+b^2)]=a^2+b^2$$
    $$\Rightarrow x=a$$
    Substitute this value in equation (1), we get
    $$\dfrac {a}{a}-\dfrac {b}{y}=0$$
    $$\Rightarrow 1-\dfrac {b}{y}=0$$
    $$\Rightarrow y=b$$
    Therefore, solution is $$x=a, y=b$$.
  • Question 8
    1 / -0
    Solve :
    $$x\, +\, y\, =\, 2xy$$
    $$x\, -\, y\, =\, 6xy$$
    Solution
    Let $$ x + y = 2xy $$ --- $$(1)$$
    $$ x - y = 6xy $$ ----- $$(2)$$
    Adding equations $$(1)$$ and  $$(2)$$, we get 
    $$ 2x = 8xy$$
    $$ \Rightarrow  y = \dfrac {1}{4} $$

    Substituting $$ y =  \dfrac {1}{4} $$ in the equation $$ (1) $$, we get 

    $$ x +  \dfrac {1}{4} = 2(x)( \dfrac {1}{4}) $$

    $$\therefore x = -\dfrac {1}{2} $$

  • Question 9
    1 / -0
    Solve graphically, the following pairs of equations:
    $$\displaystyle \frac{x + 1}{4} = \frac{2}{3}(1 - 2y)$$

    $$\displaystyle \frac{2 + 5y}{3} = \frac{x}{7} - 2$$
    Solution

    $$\dfrac{x+1}{4}=\dfrac{2}{3}(1-2y)$$

    $$x+1=\dfrac{8}{3}(1-2y)$$

    $$\implies x=\dfrac{8(1-2y)}{3}-1$$

    $$\implies x=\dfrac{8(1-2y)-3}{3}$$

    $$\implies x=\dfrac{8-16y-3}{3}$$

    $$\implies x=\dfrac{5-16y}{3}$$
    Let, $$y=2$$, then $$x=\dfrac{5-16(2)}{3}=-9$$
    Similarly, when $$y=-1, x=7$$
    Now,
    $$\dfrac{2+5y}{3}=\dfrac{x}{7}-2$$

    $$\implies \dfrac{2+5y}{3}+2=\dfrac{x}{7}$$

    $$\implies \dfrac{2+5y+6}{3}=\dfrac{x}{7}$$

    $$\implies \dfrac{7(8+5y)}{3}=x$$

    $$\implies \dfrac{56+35y}{3}=x$$
    Let, $$y=-1$$, then $$x=\dfrac{56+35(-1)}{3}=7$$
    Similarly, when $$y=-2, x=-8$$
    $$\therefore$$ the intersecting point is $$(7,-1)$$

  • Question 10
    1 / -0
    Solve graphically, the following pairs of equations:
    $$3x + 7y = 27$$
    $$8 - y = \displaystyle \frac{5}{2}x$$
    Solution
    $$3x+7y=27$$

    $$\implies 3x=27-7y$$

    $$\implies x=\dfrac{27-7y}{3}$$

    Let, $$y=3$$, then $$x=\dfrac{27-7(3)}{3}=2$$

    Similarly, when $$y=6, x=-5$$

    $$\therefore$$ the coordinates are $$(2,3),(-5,6)$$

    $$8-y=\dfrac{5}{2}x$$

    $$\implies 8-\dfrac{5}{2}x=y$$

    Let, $$x=2$$, then $$y=8-\dfrac{5}{2}\times 2=3$$

    Similarly, when $$x=4,y=-2$$

    $$\therefore$$ the coordinates are $$(2,3),(4,-2)$$

    $$\therefore x=2,y=3$$

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now