Self Studies

Pair of Linear Equations in Two Variables Test - 37

Result Self Studies

Pair of Linear Equations in Two Variables Test - 37
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    From Delhi station, if we buy 2 tickets for station A and 3 tickets for station B, the total cost is Rs. 77. But if we buy 3 tickets for station A and 5 tickets for station B, the total cost is Rs. 124. What are the fares from Delhi to station A and to station B?
    Solution

    $${\textbf{Step -1: Writing mathematical equations according to conditions given in question}}$$

                       $${\text{Let the price of ticket for station A be Rs}}{\text{. x and for station B be Rs}}{\text{. y,}}$$

                      $${\text{According to question, }}$$

                      $${\text{2x  +  3y  =  77 }} \to {\text{ Equation 1}}$$

                      $${\text{3x  +  5y  =  124 }} \to {\text{ Equation 2}}$$

    $${\textbf{Step -2: Calculating fares for station A and station B .}}$$

                      $${\text{Solving Equation 1 and Equation 2,}}$$

                      $${\text{Multiplying Equation 1 by 3,}}$$

                      $${\text{6x  +  9y  =  231 }} \to {\text{ Equation 3}}$$

                      $${\text{Multiplying Equation 2 by 2,}}$$

                      $${\text{6x  +  10y  =  248 }} \to {\text{ Equation 4}}$$

                      $${\text{Subtracting Equation 3 from Equation 4,}}$$

                      $$ \Rightarrow {\text{ y  =  248  -  231}}$$

                      $$ \Rightarrow {\text{ y  =  17}}$$

                      $${\text{Substituting value of y in Equation 1,}}$$

                      $$ \Rightarrow {\text{ 2x  +  3(17)  =  77}}$$

                      $$ \Rightarrow {\text{ 2x  +  51  =  77}}$$

                      $$ \Rightarrow {\text{ 2x  =  26}}$$

                      $$ \Rightarrow {\text{ x  =  13}}$$

    $${\textbf{Thus, the fare to station A is Rs}}{\textbf{. 13 and to station B is Rs}}{\textbf{.17 .}}$$

  • Question 2
    1 / -0
    The pair of linear equations $$3x+5y=3, 6x+ky=8$$ do not have any solution if
    Solution
    The equation are
    $$ 3x+5y-3=0$$     ....(1)
    $$ 6x+ky-8=0$$     .....(2)
    Here, $$ a_{1}=3,b_{1}=5,c_{1}=-3$$
    and $$ a_{2}=6,b_{2}=k,c_{2}=-8$$
    The   given   system   has   no   solution   if
    $$\displaystyle \frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}\neq\frac{c_{1}}{c_{2}}$$
    $$\Rightarrow \displaystyle \frac{3}{6}=\frac{5}{k}\neq \frac{-3}{-8}$$
    $$\Rightarrow 3k=30\Rightarrow k=10$$  
  • Question 3
    1 / -0
    The pair of linear equations $$3x - 5y + 1 = 0, 2x - y + 3 = 0$$ has a unique solution $$x = x_1, y=y_1$$ then $$y_1=$$
    Solution
    Given equations are
    $$3x - 5y + 1= 0$$
    $$2x - y + 3= 0 $$
    Since, the system has unique solution at $$x = x_1$$ and $$y=y_1$$
    That means the lines intersect at only one point $$(x_{1},y_{1})$$
    By putting $$x =x_{1}$$ and $$y = y_{1}$$ in given equations
    $$ 3x_{1} -5 y_{1} + 1 = 0 $$     .....(1)
    $$2 x_{1} -y_{1} + 3 = 0 $$        .....(2)
    From equation(2), we have 
    $$ y_{1} = 2 x_{1} + 3$$      .....(3)
    Putting the value of $$y_{1}$$ in  equation(1)
    $$ 3x_{1} - 5\left ( 2x_{1} + 3 \right ) + 1 = 0 $$
    $$ \Rightarrow  3x_{1} - 10x_{1} - 15 + 1 = 0$$
    $$ \Rightarrow  -7x_{1} - 14 = 0$$
    $$ \Rightarrow  -7x_{1} = 14$$
    $$\Rightarrow  x_{1}  = -2$$
    Put this value in equation (3), we get
    $$   y_{1} =2\left ( -2 \right ) + 3$$
    $$   y_{1} = -1$$
  • Question 4
    1 / -0
    If the sum of the ages of a father and his son in years is $$65$$ and twice the difference of their ages in years is $$50$$, then the age of the father is:
    Solution

    Let father's age $$=x$$, son's age $$=y$$    

     As per question,

    $$x+y=65\Rightarrow y=65-x $$         .....(1)                                                

    $$2\left( x-y \right )=50\Rightarrow2x-2y=50 $$       .......(2)
    $$\Rightarrow 2x-2\left (65-x  \right )=50$$    $$[$$ substituting value of $$y$$ from equation (1) in equation (2) $$]$$

    $$\Rightarrow2x-130+2x=50$$
    $$\Rightarrow x=45 $$

    So father's age $$=45 \text{ years}$$


  • Question 5
    1 / -0
    The pair of linear equations $$13x + ky = k, 39x + 6y = k +4$$ has infinitely many solutions if
    Solution
    The pair of linear equations
    $$ 13x+ky-k=0$$
    $$ 39x+6y-(k+4)=0$$

    Here, $$a_{1}=13,b_{1}=k,c_{1}=-k$$
    $$ a_{2}=39,b_{2}=6,c_{2}=-(k+4)$$

    The system has infinitely many solutions if
    $$\displaystyle \frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}}$$

    $$\Rightarrow \displaystyle \frac{13}{39}=\frac{k}{6}=\frac{-k}{-(k+4)}$$

    Taking,
    $$ \displaystyle \frac{13}{39}=\frac{k}{6}$$

    $$\Rightarrow \displaystyle \frac{1}{3}=\frac{k}{6}$$

    $$\Rightarrow 3k=6$$

    $$\Rightarrow k=2$$

    Taking,
    $$\displaystyle \frac{k}{6}=\frac{-k}{-(k+4)}$$

    $$\displaystyle \Rightarrow  \frac{1}{6}=\frac{1}{(k+4)}$$

    $$\Rightarrow k+4=6 \Rightarrow k=2$$

    Thus, $$k=2$$ is the correct answer
  • Question 6
    1 / -0
    The pair of equations $$x + 2y + 5 = 0$$ and $$- 3x - 6y + 1 = 0$$ have
    Solution
    The given equations are:
    $$x+2y+5= 0 $$
    $$-3x-6y+1 = 0$$
    From the given equations we have:
    $$ \displaystyle\frac{a_{1}}{a_{2}} = \frac{1}{-3}$$
    $$ \displaystyle \frac{b_{1}}{b_{2}} = \frac{2}{-6} = \frac{1}{-3} $$
    $$\displaystyle\frac{c_{1}}{c_{2}} =\displaystyle \frac{5}{1}$$
    $$\Rightarrow \displaystyle\frac{a_{1}}{a_{2}} = \displaystyle \frac{b_{1}}{b_{2}} \neq \frac{c_{1}}{c_{2}}$$
    Hence the given pair of equations have no solution.



  • Question 7
    1 / -0
    The pair of linear equations $$x + 2y = 5, 3x + 12y = 10$$ has
    Solution
    Given equations are:
    $$x+2y = 5$$
    $$3x+12y=10$$
    From the equations we have:
    $$\Rightarrow a_{1}= 1 , b_{1}= 2 $$
    $$\Rightarrow a_{2}= 3 , b_{2}= 12$$
    $$ \displaystyle \frac{a_{1}}{a_{2}} =  \displaystyle \frac{1}{3}$$
    $$ \displaystyle \frac{b_{1}}{b_{2}} =  \displaystyle \frac{2}{12}=\frac{1}{6}$$

    $$\Rightarrow \displaystyle \frac{a_{1}}{a_{2}} \neq    \frac{b_{1}}{b_{2}}$$
    Hence system of equations has a unique solution
  • Question 8
    1 / -0
    Six years hence, a man's age will be three times the age of his son and three years ago he was nine times as old as his son. The present age of the man is
    Solution
    Let the present age of man be $$x$$ years and the present age of son be $$y$$ years

    After six years:
    Man's   age  = $$ (x+6)\  years$$ 
    Son's   age   =  $$(y+6)\  years$$

    According   to   the    condition 
    $$\Rightarrow x+6=3\left (y+6  \right )$$
    $$\Rightarrow x-3y=12$$
    $$\Rightarrow x=12+3y$$         $$...(1)$$

    Three years ago:
    Man's   age =$$ (x-3)\ years$$
    Son's   age = $$(y-3)\ years$$

    According   to   the   condition
    $$\Rightarrow x-3=9\left (y-3  \right )$$
    $$\Rightarrow x-9y=-24$$       $$...(2)$$

    Put the value of $$x$$ in equation $$\left ( 2 \right )$$
    $$\Rightarrow 12+3y-9y=-24$$
    $$\Rightarrow y=6$$

    Put the value of $$y$$ in equation $$\left (  1\right )$$
    $$x-3\times6=12$$
    $$\Rightarrow x=30$$ 

    So, Man's age =  30 years  
     
  • Question 9
    1 / -0
    The pair of linear equations $$x + 2y = 5, 7x + 3y = 13$$ has a unique solution
    Solution
    Given equations are:
    $$ x + 2y = 5$$      ....(1)
    $$7x+3y = 13$$    .....(2)
    Multiplying equation (1) by 7
    $$7x+14y = 35 $$    .....(3)
    Subtracting equation (2) from equation (3), we have
    $$ 11y = 22$$
    $$ y = 2 $$
    Now putting $$y$$ value in equation (1) 
    $$\Rightarrow x + 2\left ( 2 \right ) = 5$$
    $$\Rightarrow x = 5 - 4$$
    $$\Rightarrow x = 1$$
    $$ x = 1 , y = 2 $$
  • Question 10
    1 / -0
    The pair of linear equations $$2x + ky = k, 4x + 2y = k + 1$$ has infinitely many solutions if
    Solution
    The equation are
    $$2x+ky-k=0$$
    $$4x+2y-(k+1)=0$$
    Here, $$ a_{1}=2,b_{1}=k,c_{1}=-k$$
    and $$ a _{2}=4,b_{2}=2,c_{2}=-(k+1)$$
    For the system to have infinite solutions,
    $$\displaystyle \frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}}$$
    $$\Rightarrow \displaystyle \frac{2}{4}=\frac{k}{2}=\frac{-k}{-(k+1)}$$

    Taking, 
    $$\displaystyle \frac{2}{4}=\frac{k}{2}$$

    $$\Rightarrow 4k=4$$

    $$\Rightarrow k=1$$   

    Taking,
    $$\displaystyle\frac{k}{2}=\frac{-k}{-(k+1)}$$

    $$\Rightarrow k+1=2 \Rightarrow k=1$$

    So, $$k=1$$ is the answer

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now