Self Studies

Pair of Linear Equations in Two Variables Test - 44

Result Self Studies

Pair of Linear Equations in Two Variables Test - 44
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Form the pair of linear equations for the following problem and find their solution by substitution method.
    The difference between the two numbers is $$26$$ and one number is three times the other.
    Solution
    Let the two numbers be $$x$$ and $$y\  (x> y)$$.

    In question given that the difference between two number is $$26$$.
    $$\Rightarrow x- y = 26$$ .......(i)

    And the one number is $$3$$ times of the other number
    $$\Rightarrow x = 3y$$ .......(ii)

    Now putting $$x = 3y$$ in equation (1)
    $$\Rightarrow 3y - y = 26$$
    $$\Rightarrow 2y = 26$$
    $$ \Rightarrow y = 13$$

    Now substituting $$y$$ value in (2),
    $$\Rightarrow x = 3 \times 13$$
    $$\Rightarrow x = 39$$

    Hence, $$x = 39$$ , $$y = 13$$
  • Question 2
    1 / -0
    Solve the following pair of linear equations by the substitution method.
    $$\dfrac {3x}{2}-\dfrac {5y}{3}=-2,\,\, \dfrac {x}{3}+\dfrac {y}{2}=\dfrac {13}{6}$$
    Solution
    Given Pair of equations are:
    $$\frac{3x}{2}-\frac{5y}{3} = -2\Rightarrow 9x-10y=-12$$ ...eq(i)

    $$\frac{x}{3}+\frac{y}{2} = \frac{13}{6}\Rightarrow 2x+3y=13$$  ...eq(ii)
    Now from eq2 will get
    $$2x+3y = 13$$
    Now using substitution method
    $$ y = \frac{13-2x}{3}$$
    Now substituting y in eq (i) will get
    $$\Rightarrow  9x-\frac{10\left ( 13-2x \right )}{3} = -12$$
    $$\Rightarrow 27x-130+20x= -36$$
    $$\Rightarrow 47x = -36+130$$
    $$\Rightarrow 47x = 94$$
    $$\Rightarrow x = 2$$
    Now substituting x in eq (ii) will get
    $$\Rightarrow 2\times 2 +3y = 13$$
    $$\Rightarrow 4 +3y = 13$$
    $$\Rightarrow 3y = 13-4$$
    $$\Rightarrow 3y = 9$$
    $$\Rightarrow y = 3$$
    $$\Rightarrow x = 2 , y = 3$$




  • Question 3
    1 / -0
    Solve the following pair of linear equations by the substitution method
    $$s-t=3, \dfrac {s}{3}+\dfrac {t}{2}=6$$
    Solution
    $$s-t=3$$.....(i)
    $$\frac {s}{3}+\frac {t}{2}=6$$.....(ii)
    From (i) $$s = t + 3$$ ...(iii)
    Substituting s from (iii) in (ii), we get
    $$\frac {t+3}{3}+\frac {t}{2}=6$$
    $$\Rightarrow 2(t + 3) + 3t = 36$$
    $$\Rightarrow 5t + 6 = 36$$
    $$\Rightarrow t = 6$$
    From (iii), $$s =6 +3 = 9$$,
    Hence, $$s = 9, t = 6$$
  • Question 4
    1 / -0
    Solve the following pair of linear equations by the substitution method
    $$x + y = 14, x - y = 4$$
    Solution
    $$x + y = 14$$ ....(i)
    $$x - y = 4$$ .....(ii)
    From (ii) $$y=x - 4$$ ...(iii)
    Substituting y from (iii) in (i), we get
    $$x + x - 4 = 14 $$
    $$\Rightarrow 2x = 18$$
    $$\Rightarrow x =9$$
    Substituting $$x = 9$$ in (iii), we get
    $$y = 9 - 4 = 5$$,
    i.e, $$y = 5$$
    $$x = 9, y = 5$$
  • Question 5
    1 / -0
    Solve the following pair of linear equations by the substitution method.
    $$0.2x + 0.3y = 1.3, 0.4x + 0.5y = 2.3$$
    Solution
    The given equations are
    $$\Rightarrow .2x+.3y=1.3........eq1$$
    $$\Rightarrow x=\frac{1.3-.3y}{.2}.......eq2$$

    and
    $$\Rightarrow .4x+.5y=2.3.......eq3$$
    Substitute the value of x  in eq3
    $$\Rightarrow .4\times\left (\frac{1.3-.3y}{.2} \right)+.5y=2.3$$
    $$\Rightarrow 2.6-.6y+.5y=2.3$$
    $$\Rightarrow -.1y=-.3 \Rightarrow y=3$$
    Substitute $$y=3$$ in eq 2
    $$\Rightarrow x=\frac{1.3-.9}{.2}\Rightarrow x=2$$
    Hence x=2 and y=3
  • Question 6
    1 / -0
    A fraction becomes $$\dfrac {9}{11}$$, if $$2$$ is added to both the numerator and the denominator. If $$3$$ is added to both the numerator and the denominator it becomes $$\dfrac {5}{6}$$. Find the fraction.
    Solution

    Let $$\dfrac {x}{y}$$ be the fraction, where $$x$$ and $$y$$ are positive  integers. 


    $$\Rightarrow \dfrac {x+2}{y+2}=\dfrac {9}{11}$$ ..(1)
    $$\Rightarrow \dfrac {x+3}{y+3}=\dfrac {5}{6}$$ ..(2)

    From (1) we get 
    $$\Rightarrow 11x+22 = 9y+18$$
    $$\Rightarrow 11x-9y = -4$$ ...(3)

    From (2) we get 
    $$\Rightarrow 6x +18 = 5y +15$$
    $$\Rightarrow 6x-5y = -3$$ ...(4)

    From (4) will get
    $$y = \dfrac{3+6x}{5}$$

    Now substituting $$y$$ in (3),

    $$\Rightarrow 11x-\dfrac{9\left ( 3+6x \right )}{5} = -4$$

    $$\Rightarrow 55x-27-54x = -20$$

    $$\Rightarrow 55x-54x = -20+27$$

    $$\Rightarrow x = 7$$

    Now substituting $$x$$ in (4)

    $$\Rightarrow 6\times 7 -5y = -3$$

    $$\Rightarrow 42-5y = -3$$

    $$\Rightarrow -5y = -3 - 42$$

    $$\Rightarrow -5y = -45$$

    $$\Rightarrow y = 9$$

    Hence, $$ x = 7$$ and $$ y = 9$$.

    And fraction $$\dfrac{x}{y}=\dfrac{7}{9}$$

  • Question 7
    1 / -0
    Five years hence, the age of jacob will be three times that of his son. Five years ago, Jacob's age was seven times that of his son. What are their present ages?
    Solution
    Let $$x$$ be the present age of Jacob's son and $$y$$ be the present age of Jacob. Then as per the question

    $$(y + 5) =3(x + 5)\ ......(1)$$
    $$(y- 5) = 7 (x - 5)\  ......(2)$$

    From equation $$(1)$$,
    $$\Rightarrow y +5 = 3x +15$$
    $$\Rightarrow 3x-y = -10\ ......(3)$$

    From equation $$(2)$$, 
    $$\Rightarrow y-5 = 7x-35$$
    $$\Rightarrow 7x-y = 30\  .......(4)$$

    from equation $$(3)$$ we get
    $$\Rightarrow -y = -10 -3x$$
    $$\Rightarrow y = 10 +3x$$

    Now Substitute $$y$$ in $$(4)$$
    $$\Rightarrow 7x-\left ( 10+3x \right ) = 30$$
    $$\Rightarrow 7x -10-3x = 30$$
    $$\Rightarrow 4x = 30+10$$
    $$\Rightarrow 4x = 40$$
    $$\Rightarrow x = 10$$

    Now substituting $$x$$ in (1) will give
    $$\Rightarrow 3\times 30-y = -10$$
    $$\Rightarrow 30 - y = -10$$
    $$\Rightarrow -y = -40$$
    $$\Rightarrow y = 40$$

    Hence, Jacob's son's current  age $$=$$ $$10$$  and  Jacob's Current age $$=$$ $$40$$.
  • Question 8
    1 / -0
    Form the pair of linear equations for the following problem and find their solution by substitution method.
    The larger of two supplementary angles exceeds the smaller by $$18$$ degrees. 
    Solution
    Let the supplementary angles be $$x$$ and $$y$$, $$(x> y) $$

    $$\therefore$$ Sum of both angles is $$180^0$$

    $$\Rightarrow x + y = 180$$ ...$$(1)$$

    The larger angle exceeds the smaller by $$18^0$$

    $$\Rightarrow x - y = 18$$ ...$$(2)$$

    $$\Rightarrow y=x -18$$

    Put value of $$y$$ in (1), we get

    $$2x=198$$

    $$\Rightarrow x = 99$$

    Now substituting the value of $$x$$ in equation $$(1)$$

    $$\Rightarrow 99+y  = 180$$

    $$ \Rightarrow y = 180-99$$

    $$\Rightarrow y = 81$$

    Hence, $$ x = 99^0 $$ and  $$ y = 81^0$$

    The pair of linear equations for the given problem are
    $$ x + y = 180$$ and $$ x - y = 18$$ .
  • Question 9
    1 / -0
    Form the pair of linear equations in the following problems, and find their solutions (if they exist) by the elimination method:
    Five years ago Nuri was thrice as old as Sonu. Ten years later, Nuri will be twice as old as Sonu. How old are Nuri and Sonu?
    Solution
    Let present age of  Nuri= $$x$$  years
    Let present age of  sonu=$$y$$ years
    Five years ago
    Nuri   was  $$\left(x-5 \right)  years$$
    Sonu   was $$ \left(y-5 \right)  years$$
    According to the first condition
    $$\Rightarrow \left(x-5 \right)=3\left(y-5 \right)$$
    $$\Rightarrow x-5=3y-15 \Rightarrow x-3y=-10.........eq1$$
    Ten years later
    Nuri  will be $$ \left(x+10    \right)  years$$
    Sonu will be $$\left(y+10   \right)$$
    $$\Rightarrow \left(x+10   \right)=2\left(y+10 \right)$$
    $$\Rightarrow x+10=2y+20 \Rightarrow x+2y=10.....eq2$$
    Subtracting $$eq 1 and eq2$$
    $$\Rightarrow -y=-2- \Rightarrow y=20$$
    put y=20 in $$eq1$$
    $$x-3y=10 \Rightarrow x=10-60 \Rightarrow x=50$$
    Hence, present age of  Nuri= 50 years
    Let present age of  sonu=20 years

  • Question 10
    1 / -0
    Solve the following pair of equations by reducing them to a pair of linear equations:

    $$\dfrac {1}{(x-1)}+\dfrac {1}{(y-2)}=2, \ \dfrac {6}{(x-1)}-\dfrac {2}{(y-2)}=1$$
    Solution

    The given equations are

    $$ \dfrac { 1 }{ x-1 } +\dfrac { 1 }{ y-2 } =2$$   and

    $$ \dfrac { 6 }{ x-1 } -\dfrac { 2 }{ y-2 } =1 $$


    Let $$ \dfrac { 1 }{ x-1 } =u$$ and $$ \dfrac { 1 }{ y-2 } =v$$

    $$ u+v=2$$    .......(i) and 

    $$ 6u-2v=1$$    ......(ii) 


    Multiply (i) by $$6$$

    $$\Rightarrow 6u+6v=12$$  ......(iii)

    Subtract (ii) from (iii)

    $$\Rightarrow 8v=11$$

    $$\Rightarrow v=\dfrac { 11 }{ 8 } $$

    Therefore $$ \dfrac { 1 }{ y-2 } =\dfrac { 11 }{ 8 } $$

    $$ \Rightarrow y-2=\dfrac { 8 }{ 11 } $$

    $$ \Rightarrow y=\dfrac { 30 }{ 11 }  $$

    Putting $$ v=\dfrac { 11 }{ 8 }  $$ in  (i), we get

    $$ u+\dfrac { 11 }{ 8 } =2$$

    $$ \Rightarrow u=\dfrac { 5 }{ 8 } $$

    $$ \Rightarrow  \dfrac { 1 }{ x-1 } =\dfrac { 5 }{ 8 }$$

    $$ \Rightarrow x-1=\dfrac { 8 }{ 5 } $$

    $$ \Rightarrow   x=\dfrac { 13 }{ 5 }$$

    Therefore, $$ \left( x,y \right) =\left( \dfrac { 13 }{ 5 } ,\dfrac { 30 }{ 11 }  \right) $$

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now