Self Studies

Pair of Linear Equations in Two Variables Test - 49

Result Self Studies

Pair of Linear Equations in Two Variables Test - 49
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    10 years ago the age of the father was 5 times that of the son. 20 years hence the age of the father will be twice that of the son. The present age of the father (in years) is
    Solution
    Let the present age of father be $$x$$ years. and that of son be $$y$$ years
    10 years ago the age of the father was 5 times that of the son.
    $$\therefore$$   $$x-10=5(y-10)$$
    $$\therefore$$   $$x-5y=-40$$       ...(1)
    20 years hence, the age of the father will be twice that of the son.
    $$\therefore$$   $$x+20=2(y+20)$$
    $$\therefore$$   $$x-2y=20$$        ...(2)
    Subtracting (1) and (2) we get ,
    $$y=20$$ and $$x=60$$
    $$\therefore$$ The present age of father is $$60$$ years
  • Question 2
    1 / -0
    The graphs of $$2x+3y-6=0, 4x-3y-6=0, x=2$$ and $$ \displaystyle  y=\dfrac{2}{3}  $$ intersect in 
    Solution
    Solving $$2x + 3y - 6 = 0$$ and $$4x - 3y - 6 = 0$$ we get
    $$x = 2$$ and $$\displaystyle y=\dfrac{2}{3}$$
    Hence from all the four given equations the
    value of $$x$$ is $$2$$ and $$y$$ is $$\displaystyle \frac{2}{3}$$
    Therefore the graphs of all the four lines intersect
    in one point

  • Question 3
    1 / -0
    What values of x and y satisfies the equations  $$\displaystyle \frac{x}{6}+\frac{y}{15}=4$$ and $$\displaystyle \frac{x}{3}-\frac{y}{12}=4\frac{3}{4}$$
    Solution
    We pick either of the equations and write one variable in terms of the other. 
     
    Let us consider the equation $$\frac { x }{ 3 } -\frac { y }{ 12 } =4\frac { 3 }{ 4 }$$ or $$4x-y=57$$ and write it as 

    $$y=4x-57...........(1)$$

    Substitute the value of $$y$$ in Equation $$\frac { x }{ 6 } +\frac { y }{ 15 } =4$$ or $$15x+6y=360$$. We get

    $$15x+6(4x-57)=360$$

    i.e. $$15x+24x-342=360$$

    i.e. $$39x=702$$

    i.e. $$x=18$$

    Therefore, $$x=18$$

    Substituting this value of $$x$$ in equation 1, we get

    $$y=72-57$$

    i.e. $$y=15$$

    Hence, the solution is $$x = 18, y =15$$.
  • Question 4
    1 / -0
    The ratio of the ages of A and B ten years before was $$3 : 5$$. The ratio of their present ages is $$2 : 3$$ . Their ages are respectively
    Solution
    Let the present ages of $$A$$ and $$B$$ are $$x$$ and $$y$$ years respectively
    $$\displaystyle \therefore \dfrac{x-10}{y-10}=\dfrac{3}{5}$$    .....(i)
    or $$5x -50=3y-30$$           ......(ii)
    and $$\displaystyle \dfrac{x}{y}=\dfrac{2}{3} $$or $$3x=2y$$ or $$y=\dfrac{3x}{2}$$
    putting the value of y in equation (i) we get
    $$5x-50=$$$$\displaystyle \dfrac{9x}{2}-30$$
    $$10x-100=9x-60$$
    or $$x=40$$           $$\displaystyle \therefore y=\dfrac{3\times 40}{2}=60$$
  • Question 5
    1 / -0
    In the system of equations $$\dfrac {12}{x+y}+\dfrac {8}{x-y}=8$$ and $$\dfrac {27}{x+y}-\dfrac {12}{x-y}=3$$, the values of $$x$$ and $$y$$ will be
    Solution
    If $$\dfrac {1}{x+y}=a$$ and $$\dfrac {1}{x-y}=b$$, then the equations will be:
    $$12a + 8b = 8$$........ (i)
    and $$27a -12b = 3$$ ........... (ii)
    On multiplying equation (i) by 3 and equation (ii) by 2 and adding the two equations,
    $$3(12a + 8b) + 2(27a -12b) = 8\times 3+3 \times 2$$
    $$\therefore 36a + 24b + 54a -24b = 24 + 6$$
    $$\therefore 90a=30\Rightarrow a=\dfrac {30}{90}=\dfrac {1}{33}$$
    On substituting this value of a in equation (i),
    $$12\times \dfrac {1}{3}+8b=8\therefore 4+8b=8$$
    $$\Rightarrow 8b=4\Rightarrow b=\dfrac {1}{2}$$
    $$\because \dfrac {1}{x+y}=a=\dfrac {1}{3}\Rightarrow x+y=3$$ ......(iii)
    and $$\dfrac {1}{x+y}=b=\dfrac {1}{2}\Rightarrow x-y=2$$ ......(iv)
    On adding equation (iii) and (iv),
    $$2x=5\Rightarrow x=\dfrac {5}{2}$$
    On substituting this value of x in equation (iii),
    $$\dfrac {5}{2}+y=3\Rightarrow y=3-\dfrac {5}{2}$$
    $$\Rightarrow y=\dfrac {1}{2}$$
    $$\therefore x=\dfrac {5}{2}$$ and $$y=\dfrac {1}{2}$$
  • Question 6
    1 / -0
    Solve equations using substitution method: $$x-y = 3$$ and $$x + y = 0$$
    Solution
    $$x- y = 3\dots (1)$$  
    $$x + y = 0\dots (2)$$  
    From equation $$(1)$$ :
    $$y = x - 3$$
    Substitute the value of $$y$$ in equation $$(2)$$ : 
    $$x + y = 0$$
    $$x + x- 3 = 0$$
    $$2x = 3$$
    $$x=\dfrac{3}{2}$$

    Now, Substitute $$x = \dfrac{3}{2}$$ in equation $$(1)$$:
    $$x- y = 3$$
    $$\dfrac{3}{2}- y = 3$$
    $$y = \dfrac{3}{2}- 3$$
    $$y = -\dfrac{3}{2}$$
    Therefore the solution is: 
    $$x =\dfrac{3}{2}$$ and $$y = -\dfrac{3}{2}$$
  • Question 7
    1 / -0
    Find the value of x and y using substitution method:
    $$5x - 6y = 2$$ and $$6x - 5y = 9$$
    Solution
    $$5x -6y = 2$$ ------- $$(1)$$
    $$6x - 5y = 9$$ ------- $$(2)$$

    From equation $$(1)$$:

    $$\Rightarrow 6y = 5x- 2$$

    $$\Rightarrow y =\dfrac{5x-2}{6}$$

    Substitute the value of $$y$$ in equation $$(2)$$ :

    $$\Rightarrow 6x - 5y = 9$$

    $$\Rightarrow6x- 5(\dfrac{5x-2}{6}) = 9$$

    $$\Rightarrow36x -25x + 10 = 54$$

    $$\Rightarrow11x = 54- 10$$

    $$\Rightarrow x = \dfrac{44}{11} = 4$$

    Now, Substitute $$x = 4$$ in equation $$(1)$$ 

    $$\Rightarrow5x - 6y = 2$$

    $$\Rightarrow5(4)-6y = 2$$

    $$\Rightarrow 20 - 2 = 6y$$

    $$\Rightarrow18 = 6y$$

    $$\Rightarrow y =\dfrac{18}{6}=3$$

    $$\therefore$$  the solution is $$x = 4$$ and $$y = 3$$
  • Question 8
    1 / -0
    Solve equations using substitution method:
    $$2x -y = 3$$ and $$4x + y = 3$$
    Solution
    $$2x- y = 3$$ ------- (1)
    $$4x + y = 3$$ ------ (2)
    From equation 1 :
    $$y = 2x - 3$$
    Substitute the value of $$y$$ in equation 2 : 
    $$4x + y = 3$$
    $$4x + 2x -3 = 3$$
    $$6x = 3 + 3$$
    $$x = \dfrac{6}{6} = 1$$
    Now, Substitute $$x = 1$$ in equation 1 : 
    $$2x -y = 3$$
    $$2 (1)- y = 3$$
    $$2- 3 = y$$
    $$y = -1$$
    Therefore the solution is: $$x = 1$$ and $$y = -1$$
  • Question 9
    1 / -0
    Solve equations using substitution method:
    $$2x + y = 5$$ and $$2x-  3y = 3$$
    Solution
    $$2x + y = 5$$ ------- (1)
    $$2x- 3y = 3$$------ (2)
    From equation 1 : 
    $$y = 5 -2x$$
    Substitute the value of y in equation 2 : 
    $$2x -3(5- 2x) = 3$$
    $$2x -15 + 6x = 3$$
    $$8x = 3 + 15$$
    $$x = \dfrac{18}{8} = \dfrac{9}{4}$$
    Now, Substitute $$x = \dfrac{9}{4}$$ in equation 1 :
    $$2(\dfrac{9}{4}) + y = 5$$
    $$18 + 4y = 20$$
    $$4y = 20 -18$$
    $$y = \dfrac{2}{4}$$
    $$y = \dfrac{1}{2}$$
    Therefore the solution is: $$x = \dfrac{9}{4}$$ and $$y = \dfrac{1}{2}$$
  • Question 10
    1 / -0
    If $$2$$ tables and $$3$$ chairs cost $$Rs. 4500$$ and $$3$$ tables and $$2$$ chairs cost $$Rs. 5000$$, then how much does a table cost?
    Solution
    Let the cost of table and chair is $$x$$ and $$y$$. 
    Then, $$2x+3y=4500$$        ....(1)
    and $$3x+2y=5000$$           ...(2)
    Add eq(1) and eq(2)
    $$5x+5y=9500$$
    $$x+y = 1900$$                            ....(3)
    Subtract eq(1) from eq(2)
    $$x-y= 500 $$                          ....(4)
    Solving eq(3) and eq(4) we get
    $$2x=2400$$
    $$x =1200$$ 
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now