Self Studies

Pair of Linear Equations in Two Variables Test - 50

Result Self Studies

Pair of Linear Equations in Two Variables Test - 50
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Father says to son "I am $$5$$ times as old as you were when i was as old as you are". If sum of their ages is $$48$$, what is the age of the father?
    Solution
    Let the present age of father and son is x and y 
    Then as per question $$x+y=48$$ ........................(1)
    Given   $$x=5y$$ .......................................................(2)
    substituting equation 2 in equation 1 we get 
    $$5y+y=48$$
    $$6y=48$$
    $$y=8$$.........................................................................(3)
    Putting value of y in eqn 2 we get $$x=5(8)=40$$
    We get  $$x=40$$
    Then age of father is $$40$$ years
  • Question 2
    1 / -0
    Graph the equation by determining the missing values needed to plot the ordered pairs.
    $$y+x=4;$$
    $$\left( 1,   y_1\right) ,\left( 4,  y_2  \right) ,\left( 3,   y_3\right) $$

    Solution
    We have given line, $$y+x=4\Rightarrow y=4-x$$
    Now, at $$x=1, y=4-1=3$$
    At $$x=4, y=4-4=0$$ and at $$x=3, y=4-3=1$$
    Hence, given points on the line are $$(1,3),(4,0),(3,1)$$.
    Clearly these points lying on the graph of line in option B.
    Hence option B is correct choice.
  • Question 3
    1 / -0
    Find the value of $$x$$ and $$y$$ using substitution method:
    $$x-  y = 2$$ and $$2x - y = 9$$
    Solution
    $$x- y = 2$$ ------- $$(1)$$
    $$2x - y = 9$$  ------ $$(2)$$
    From equation $$(1)$$ : 
    $$y = x - 2$$
    Substitute the value of $$y$$ in equation $$(2)$$:
    $$2x - y = 9$$
    $$2x -x + 2 = 9$$
    $$x = 9 -2$$
    $$x = 7$$
    Now, Substitute $$x = 7$$ in equation $$(1)$$:
    $$x- y = 2$$
    $$7- y = 2$$
    $$y = 7 -2$$
    $$y = 5$$
    Therefore the solution is: $$x = 7$$ and $$y = 5$$
  • Question 4
    1 / -0
    Using substitution method find the value of x and y:
    $$2x - 3y = 2$$ and $$5x - 6y = 2$$
    Solution
    $$2x- 3y = 2$$ ------- (1)
    $$5x- 6y = 2$$------ (2)
    From equation 1:
    $$2x- 2 = 3y$$
    $$y =\dfrac{2x-2}{3}$$
    Substitute the value of y in equation 2:
    $$5x- 6y = 2$$
    $$5x- 6(\dfrac{2x-2}{3}) = 2$$
    $$5x- 2(2x- 2) = 2$$
    $$5x- 4x + 4 = 2$$
    $$x = 2- 4$$
    $$x = -2$$
    Now, Substitute $$x = -2$$ in equation 1:
    $$5x- 6y = 2$$
    $$5(-2)- 6y = 2$$
    $$-10 -2 = 6y$$
    $$6y = -12$$
    $$y = \dfrac{-12}{6} = -2$$
    Therefore the solution is: $$x = -2$$ and $$y = -2$$
  • Question 5
    1 / -0
    Use the method of substitution to solve the equations
    $$x+2y=-4$$ and $$4x+5y=2$$
    Solution
    $$x+2y=-4$$
    $$\implies x=-4-2y$$
    Substituting $$ x=-4-2y$$ in 
    $$4x+5y=2$$
    $$\implies 4(-4-2y)+5y=2$$
    $$\implies -16-8y+5y=2$$
    $$\implies -16-3y=2$$
    $$\implies -16-2=3y$$
    $$\implies y=\dfrac{-18}{3}=-6$$
    Substituting $$y=-6$$ in $$ x=-4-2y$$, we get,
    $$x=-4-2(-6)$$
    $$=-4+12=8$$
    $$\therefore x=8, y=-6$$


  • Question 6
    1 / -0
    Solve the equation using substitution method:
    $$3x-5y =11$$ and $$+10y+6x=7$$ 
    Solution
    $$3x-5y =11$$ ---------- (1)
    $$+10y+6x=7$$  ---------(2)
    From equation (1)
     $$3x-5y=11$$
    $$\frac{3x-11}{5}=y$$
    Substitute the value of $$y$$ in equation (2)
    $$+10\left(\frac{3x-11}{5}\right)+6x = 7$$
    $$+6x-22+6x = 7$$
    $$12x=7+22$$
    $$x=\frac{29}{12}$$
    Substitute the value of $$x$$ in equation (1) 
    $$3x-5y = 11$$
    $$3\left(\frac{29}{12}\right) - 5y = 11$$
    $$29-20y = 44$$
    $$29-44=20y$$
    $$\frac{-153}{20} = y$$
    $$y=\frac{-3}{4}$$
    therefore solution is $$x=\frac{29}{12}$$ and $$y=\frac{-3}{4}$$
  • Question 7
    1 / -0
    Using substitution method find the value of $$x$$ and $$y:$$
    $$x + 4y = -4$$ and $$2x-  3y = 2$$
    Solution
    $$x + 4y = -4$$ ------- $$(1)$$
    $$2x- 3y = 2$$  ------ $$(2)$$
    From equation $$1:$$ 
    $$4y = -4 -x$$
    $$y =\dfrac{-4-x}{4}$$
    Substitute the value of $$y$$ in equation $$2:$$
    $$2x- 3y = 2$$
    $$2x- 3\left(\dfrac{-4-x}{4}\right) = 2$$
    $$8x + 12 + 3x = 8$$
    $$11x = 8-12$$
    $$11x = -4$$
    $$x = \dfrac{-4}{11}$$
    Now, Substitute $$x =\dfrac{-4}{11}$$ in equation $$1:$$
    $$x + 4y = -4$$
    $$\dfrac{-4}{11} + 4y = -4$$
    $$-4 + 44y = -44$$
    $$44y = -44 + 4$$
    $$44y = -40$$
    $$y = \dfrac{-40}{44} \\= \dfrac{-10}{11}$$
    Therefore the solution is: $$x = \dfrac{-4}{11}$$ and $$y = \dfrac{-10}{11}$$
  • Question 8
    1 / -0
    Using substitution method find the value of x and y:
    $$3x+5y$$  $$= 1$$ and $$4x + 5y $$$$= 2$$
    Solution
    $$3x+5y=1$$
    $$\implies 3x=1-5y$$
    $$\implies x=\dfrac{1-5y}{3}$$
    Now, Substituting $$x=\dfrac{1-5y}{3}$$ in 
    $$4x+5y=2$$

    $$\implies 4(\dfrac{1-5y}{3})+5y=2$$

    $$\implies \dfrac{4-20y+15y}{3}=2$$

    $$\implies 4-5y=6$$
    $$\implies -2=5y$$
    $$\implies y=\dfrac{-2}{5}$$

    Substituting $$y=\dfrac{-2}{5}$$ in $$x=\dfrac{1-5y}{3}$$
    $$x=\dfrac{1-5(\dfrac{-2}{5})}{3}$$
    $$x=\dfrac{1+2}{3}=1$$
    $$\therefore x=1, y=\dfrac{-2}{5}$$
  • Question 9
    1 / -0
    Using substitution method find the value of x and y:
    $$4x + 9y = 5$$ and $$-5x + 3y = 8$$
    Solution
    $$4x+9y=5$$
    $$\implies 4x=5-9y$$
    $$\implies x=\dfrac{5-9y}{4}$$
    Substituting $$x=\dfrac{5-9y}{4}$$ in 
    $$-5x+3y=8$$, we get,
    $$-5(\dfrac{5-9y}{4})+3y=8$$
    $$\implies \dfrac{-25+45y+12y}{4}=8$$
    $$\implies -25+45y+12y=8\times 4$$
    $$\implies -25+57y=32$$
    $$\implies 57y=57$$
    $$\implies y=1$$
    Substituting $$y=1$$in $$x=\dfrac{5-9y}{4}$$
    $$x=\dfrac{5-9(1)}{4}$$
    $$\implies x=\dfrac{-4}{4}$$
    $$\implies x=-1$$
    $$\therefore x=-1, y=1$$
  • Question 10
    1 / -0
    Using substitution method find the value of x and y:
    $$x - 9y = 18$$ and $$-x + 3y = -15$$
    Solution
    $$x-9y=18$$
    $$\implies x=18+9y$$
    Substituting $$ x=18+9y$$ in 
    $$-x+3y=-15$$, we get,
    $$ -(18+9y)+3y=-15$$
    $$\implies -18-9y+3y=-15$$
    $$\implies -6y=-15+18$$
    $$\implies -6y=3$$
    $$\implies y=-0.5$$
    Substituting $$y=-0.5$$ in $$ x=18+9y$$
    $$x=18+9(-0.5)$$
    $$\implies x=18-4.5$$
    $$\implies x=13.5$$
    $$\therefore x=13.5, y=-0.5$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now