Self Studies

Quadratic Equations Test - 20

Result Self Studies

Quadratic Equations Test - 20
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Check whether the following is a quadratic equation.
    $$(x - 3) (2x + 1) = x (x + 5)$$
    Solution
    Given, $$(x-3)(2x+1)=(x)(x+5)$$
    $$\Rightarrow 2x^{2}+x-6x-3=x^{2}+5x$$
    $$\Rightarrow x^{2}-10x-3=0$$
    Using quadratic formula, we get
    $$x=\dfrac{10\pm\sqrt{100-12}}{2}$$
    $$=\dfrac{10\pm7\sqrt{2}}{2}$$
  • Question 2
    1 / -0
    Find the value of the polynomial $$5x-4x^2+3$$ at $$x=0$$
    Solution
    Let,
    $$P(x)=5x-4x^2+3$$

    putting $$x=0$$

    $$P(0)=5(0)-4(0)^2+3$$

    $$=0-0+3$$

    $$=3$$
  • Question 3
    1 / -0
    Is the following equation a quadratic equation?
    $$\displaystyle \frac{3x}{4} - \frac{5x^2}{8} = \frac{7}{8}$$
    Solution
    Given, $$\dfrac{3x}{4}-\dfrac{5x^{2}}{8}=\dfrac{7}{8}$$
    Hence, $$6x-5x^{2}=7$$
    $$\Rightarrow 5x^{2}-6x+7=0$$
    $$\Rightarrow ax^{2}+bx+c=0$$
    Hence, it is a quadratic equation.
  • Question 4
    1 / -0
    Is the following equation a quadratic equation?
    $$16x^2 - 3 = (2x + 5) (5x - 3)$$
    Solution
    $$16x^2 - 3 = (2x + 5) (5x - 3)$$
    $$\Rightarrow 16x^2 - 3=10x^2-6x+25x-15$$
    $$\Rightarrow 16x^2-10x^2+6x-25x+15-3=0$$
    $$\Rightarrow 6x^2-19x+12=0$$
    Comparing it with the standard form of quadratic equation $$x^2+bx+c=0, a\neq 0$$.
    Here $$a=6$$
    Thus, it is a quadratic equation.
  • Question 5
    1 / -0
    $$\displaystyle a^2x^2 - 3abx + 2b^2 $$= 0 then $$x = \cfrac{a}{b}\ and\ x = \cfrac{b}{a}$$ are the roots of the equation.
    Solution
    $$a^{2}x^{2}-3abx+2b^{2}=0$$
    Therefore
    $$2b^{2}.a^{2}=2b^{2}a^{2}$$
    $$=2ab.ab$$
    Hence
    $$a^{2}x^{2}-abx-2abx+2b^{2}=0$$
    $$ax(ax-b)-2b(ax-b)=0$$
    $$(ax-2b)(ax-b)=0$$
    Thus, the roots are
    $$\dfrac{2b}{a},\dfrac{b}{a}$$
    Hence, the given statement is false.
  • Question 6
    1 / -0
    The condition for a general quadratic equation such that its both roots are equal, is
    Solution
    General quadratic equation is $$ax^2+bx+c=0$$
    For both roots to be equal discriminant of this quadratic should be zero $$\Rightarrow b^2-4ac=0$$
  • Question 7
    1 / -0
    Discriminant of the equation $$ -3x^2 + 2x -8 = 0$$ is 
    Solution
    The quadratic equation is $$-3x^2 + 2x -8 = 0$$
    Comparing it with $$ax^2+bx+c=0$$ we get, $$a=-3, b=2, c=-8$$
    Therefore, $$D=b^2-4ac$$
    $$2^2-4\times (-3)\times (-8)$$
    $$=4-96$$
    $$=-92$$
  • Question 8
    1 / -0
    Solve for $$y:$$ $${2y^2 +4=9y}$$
    Solution
    Given, $$2y^2+4=9y$$
    $$\Rightarrow 2y^2-9y+4=0$$
    Comparing it with standard form quadratic equation $$ax^2+bx+c=0$$, we get, 
    $$a=2, b=-9, c=4$$
    Thus required roots are $$y=\displaystyle \cfrac{-b\pm \sqrt{b^2-4ac}}{2a}$$
    $$y=\displaystyle \cfrac{9\pm\sqrt{81-32}}{4}=\frac{9\pm 7}{4}=4,\frac{1}{2}$$
    Hence, correct choice is option D.
  • Question 9
    1 / -0
    The sum of a number and its reciprocal is $$ \displaystyle \frac{125}{22} $$ The number is 
    Solution
    Let the number be x
    Now, According to question 
    $$x+ \dfrac{1}{x}= \dfrac{125}{22}$$
    $$\dfrac{x^2 +1}{x}= \dfrac{125}{22}$$
    $$22{x^2 +22}= {125}x$$
    $$22{x^2 +22}-{125}x=0$$
    $$x= \dfrac{125\pm\sqrt{(125)^2-4.22.22} }{44}$$
    $$x= \dfrac{125\pm\sqrt{(15625-1936} }{44}$$
    $$x= \dfrac{125\pm\sqrt{(13689} }{44}$$
    $$x= \dfrac{125\pm117}{44}$$
    $$x= \dfrac{125+117}{44}$$, $$x= \dfrac{125-117}{44}$$
    $$x= \dfrac{242}{44}$$, $$x= \dfrac{8}{44}$$
    Option A is correct 
    $$x= \dfrac{2}{11}$$
  • Question 10
    1 / -0
    Choose the best possible option.
    $$\displaystyle { x }^{ 3 }-5x+2{ x }^{ 2 }+1=0$$ is quadratic equation.
    Solution
    The degree of equation is 3.
    $$\displaystyle \therefore \quad { x }^{ 3 }-5x+2{ x }^{ 2 }+1=0$$ is not quadratic.
    It is cubic equation.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now