Self Studies

Quadratic Equations Test - 21

Result Self Studies

Quadratic Equations Test - 21
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Choose the best possible option.
    $$\displaystyle { x }^{ 2 }+\frac { 1 }{ 4{ x }^{ 2 } } -8=0$$ is a quadratic equation.
    Solution
    $$\displaystyle { x }^{ 2 }+\frac { 1 }{ 4{ x }^{ 2 } } -8=0$$
    $$\displaystyle \frac { 4{ x }^{ 4 }+1-8\times 4{ x }^{ 2 } }{ 4{ x }^{ 2 } } =0$$
    $$\displaystyle 4{ x }^{ 4 }+1-32{ x }^{ 2 }=0$$
    The degree of the equation is 4
    $$\displaystyle \therefore \quad { x }^{ 2 }+\frac { 1 }{ 4{ x }^{ 2 } } -8=0$$ is not a quadratic equation
  • Question 2
    1 / -0
    Determine whether the equation $$\displaystyle 5{ x }^{ 2 }=5x$$ is quadratic or not.
    Solution
    The degree of the equation is 2
    $$\displaystyle \therefore \quad 5{ x }^{ 2 }=5x$$
    $$\displaystyle =\quad 5{ x }^{ 2 }-5x=0$$ is quadratic equation.
  • Question 3
    1 / -0
    Choose best possible option.
    $$\displaystyle \left( x+\frac { 1 }{ 2 }  \right) \left( \frac { 3x }{ 2 } +1 \right) =\frac { 6 }{ 2 } \left( x-1 \right) \left( x-2 \right) $$ is quadratic.
    Solution
    $$\displaystyle \left( x+\frac { 1 }{ 2 }  \right) \left( \frac { 3x }{ 2 } +1 \right) =\frac { 6 }{ 2 } \left( x-1 \right) \left( x-2 \right) $$
    $$\displaystyle \left( 2x+2 \right) \left( 3x+2 \right) =12\left( x-1 \right) \left( x-2 \right) $$
    $$\displaystyle 12{ x }^{ 2 }-36x+24-6{ x }^{ 2 }-7x-2=0$$
     $$6x^2$$$$-43x$$ +$$22$$=0
    The degree of equation is 2
    Therefore, it is  a quadratic equation.
  • Question 4
    1 / -0
    Choose the best possible answer
    $$\displaystyle 32{ x }^{ 2 }-6=\left( 4x+10 \right) \left( 10x-6 \right) $$ is quadratic equation 
    Solution
    $$\displaystyle 32{ x }^{ 2 }-6=\left( 4x+10 \right) \left( 10x-6 \right) $$
    $$\displaystyle 32{ x }^{ 2 }-6=40{ x }^{ 2 }-24x+100x-60$$
    $$\displaystyle 8{ x }^{ 2 }+76x-54=0$$
    The degree of the equation is 2
    $$\displaystyle \therefore $$ It is a quadratic equation
  • Question 5
    1 / -0
    Calculate the zeroes of the quadratic equation $$(x+3)^2=49$$.
    Solution
    $$(x+3)^2=49$$,  given equation
    $$\Rightarrow x+3=\pm \sqrt{49}=\pm 7$$
    $$\Rightarrow x=\pm 7-3$$
    $$\Rightarrow x =-7-3, 7-3$$
    Therefore, the values are $$x =-10,4$$
  • Question 6
    1 / -0
    Which of the following is not a quadratic equation?
    Solution
    A quadratic equation can be expressed in the form $$ax^{2} + bx + c = 0$$.
    Here, the only equation that has a third degree variable is $$(3x - 2)^{3} + \dfrac{1}{2}x - 4$$ and all other equations have two degree variables.
    So, $$(3x - 2)^{3} + \dfrac{1}{2}x - 4$$ is not a quadratic equation.
  • Question 7
    1 / -0
    Discriminant of a quadratic equation $$\displaystyle p{ x }^{ 2 }+qx+r=0$$ is given by.
    Solution

    Given equation is $$px^2+qx+r=0$$
    Here $$a = p$$, $$b=q$$ and $$c=r$$
    Discriminant $$D\displaystyle = {{ b }^{ 2 }-4ac}$$ $$=\displaystyle  {{ q }^{ 2 }-4pr}$$
    Hence, option A is correct.
  • Question 8
    1 / -0
    Identify the standard format of quadratic equation.
    Solution
    A quadratic equation can be expressed in the standard form is $$ax^{2} + bx + c = 0$$ and all other equations have third degree variables.
    Hence, option A is correct.
  • Question 9
    1 / -0
    Choose the best possible option.
    $$\displaystyle (x+5)(x-8)=0$$ is quadratic equation.
    Solution
    $$\displaystyle \left( x+5 \right) \left( x-8 \right) =0$$
    $$\displaystyle { x }^{ 2 }-8x+5x-40=0$$
    $$\displaystyle { x }^{ 2 }-3x-40=0$$ is quadratic , because the degree of equation is 2
  • Question 10
    1 / -0
    Solution of the equation   $$2x^{2} = 4x + 3$$   is
    Solution
    We know the formula, $$\dfrac{-b\pm\sqrt{b^2-4ac}}{2a}$$
    Here the equation, $$2x^2-4x-3 =0$$
    $$a = 2, b = -4, c = -3$$
    Substituting the values, we get
    $$=$$ $$\dfrac{4\pm\sqrt{(-4)^2-4\times 2\times -3}}{2\times 2}$$
    $$=$$ $$\dfrac{4\pm\sqrt{16+24}}{4}$$
    $$=$$ $$\dfrac{4\pm\sqrt{40}}{4}$$
    Take $$2$$ as common, we get
    $$=$$ $$\dfrac{2\pm\sqrt{10}}{2}$$
    $$\therefore$$ solution of the equation $$ 2x^2-4x-3 $$ is $$ \dfrac{2\pm\sqrt{10}}{2}$$.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now