Self Studies

Quadratic Equations Test - 29

Result Self Studies

Quadratic Equations Test - 29
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Find the roots of each of the following quadratic equations by the method of completing the squares
    $$2x^2 - 5x + 3 = 0$$
    Solution
    Dividing the entire equation by 2, we get
    $$x^{2}-\dfrac{5x}{2}+\dfrac{3}{2}=0$$

    $$(x-\dfrac{5}{4})^{2}-\dfrac{25}{16}+\dfrac{24}{16}=0$$

    $$(x-\dfrac{5}{4})^{2}=\dfrac{1}{16}$$

    $$x-\dfrac{5}{4}=\pm\dfrac{1}{4}$$

    $$x=\dfrac{5\pm1}{4}$$
    Hence
    $$x=\dfrac{3}{2}$$ and $$x=1$$
  • Question 2
    1 / -0
    Find the solutions of $$3x^2 - 2\sqrt 6x + 2 = 0$$ by the method of completing the squares when $$x$$ is an irrational number.
    Solution
    $$3x^{2}-2\sqrt{6}x+2=0$$
    Dividing the entire equation, by $$ 3$$, we get
    $$x^{2}-\dfrac{2\sqrt{6}}{3}+\dfrac{2}{3}=0$$
    $$\left (x-\dfrac{\sqrt{6}}{3}\right)^{2}-\dfrac{6}{9}\dfrac{2}{3}=0$$
    $$\left (x-\dfrac{\sqrt{6}}{3}\right)^{2}=0$$
    $$x=\dfrac{\sqrt{6}}{3}$$
    Hence, no rational roots.
  • Question 3
    1 / -0
    Solve the equation $$x^2 - (\sqrt 3 + 1) x + \sqrt 3 = 0$$ by the method of completing the square.
    Solution
    Given equation is $$x^{2}-(\sqrt{3}+1)x+\sqrt{3}=0$$
    $$\left (x-\dfrac{\sqrt{3}+1}{2}\right)^{2}+\sqrt{3}-(\dfrac{\sqrt{3}+1}{2})^2=0$$
    $$\left (x-\dfrac{\sqrt{3}+1}{2}\right)^{2}+\sqrt{3}-\dfrac{4+2\sqrt{3}}{4}=0$$
    $$\left (x-\dfrac{\sqrt{3}+1}{2}\right)^{2}+\sqrt{3}-1-\dfrac{\sqrt{3}}{2}=0$$
    $$\left (x-\dfrac{\sqrt{3}+1}{2}\right)^{2}=1-\dfrac{\sqrt{3}}{2}$$
    $$\left (x-\dfrac{\sqrt{3}+1}{2}\right)^{2}=(\dfrac{\sqrt{3}-1}{2})^2$$
    $$x-\dfrac{\sqrt{3}+1}{2}=\pm\dfrac{\sqrt{3}-1}{2}$$
    $$x=\sqrt{3},1$$
  • Question 4
    1 / -0
    Find $$x$$ by solving the given equation:
    $$\displaystyle \frac{x + 3}{x + 2} = \frac{3x - 7}{2x - 3}$$
    Solution
    Given,     
    $$\dfrac{x + 3}{x + 2} = \dfrac{3x - 7}{2x - 3}$$
    $$\Rightarrow 3x^2-7x+6x-14=2x^2-3x+6x-9$$
    $$\Rightarrow 3x^2-2x^2-7x+6x+3x-6x-14+9=0$$
    $$\Rightarrow x^2-4x-5=0$$
    $$\Rightarrow x^2-5x+x-5=0$$
    $$\Rightarrow x(x-5)+1(x-5)=0$$
    $$\Rightarrow (x-5)(x+1)=0$$
    $$\Rightarrow x-5=0$$  and $$x+1=0$$
    $$\Rightarrow x=5$$     and $$x=-1$$
  • Question 5
    1 / -0
    Solve for $$y$$: $$ \sqrt 7 y^2 - 6y - 13 \sqrt 7 = 0$$
    Solution

    Given quadratic equation is $$\sqrt 7 y^2 - 6y - 13 \sqrt 7 = 0 $$   

    Comparing it with the standard form of equation $$ax^2+bx+c$$ we get $$a=7,b=6,c=13\sqrt 7$$ 
    Therefore, $$x= \dfrac { -b\pm \sqrt { b^ 2-4ac }  }{ 2a } $$
    $$=   \dfrac {  -(-6)\pm \sqrt { (-6)^{ 2 }-4\times \sqrt { 7 } \times \left( -13\sqrt { 7 }  \right)  }  }{ 2\sqrt { 7 }  } $$
    $$=\dfrac {  6\pm \sqrt { 36+364 }  }{ 2\sqrt { 7 }  } $$
    $$= \dfrac {  6\pm \sqrt { 400 }  }{ 2\sqrt { 7 }  } $$
    $$=\dfrac {  6\pm 20 }{ 2\sqrt { 7 }  } $$
    $$=\dfrac {  6- 20 }{ 2\sqrt { 7 }  } $$
    $$=\dfrac { \\- 14 }{ 2\sqrt { 7 }  } $$
    $$=\dfrac { \\ -7 }{ \sqrt { 7 }  } $$
    $$=\dfrac { \\ -7\times \sqrt { 7 }  }{ \sqrt { 7 } \times \sqrt { 7 }  } $$
    $$=-\sqrt 7$$
    $$=\dfrac {  6+ 20 }{ 2\sqrt { 7 }  } $$
    $$=\dfrac { \\ 26 }{ 2\sqrt { 7 }  } $$
    $$=\dfrac { \\ 13 }{ \sqrt { 7 }  } $$

  • Question 6
    1 / -0
    Find the roots of each of the following quadratic equations by the method of completing the sqaures:
    $$x^2 - 6x + 4 = 0$$
    Solution
    Given, $$x^2 - 6x + 4 = 0$$
    $$\Rightarrow x^2-2\times x\times 3+3^2-5=0$$
    $$\Rightarrow (x-3)^2=5$$
    $$\Rightarrow x-3=\pm \sqrt 5$$
    $$\Rightarrow x=3\pm \sqrt 5$$
  • Question 7
    1 / -0
    Find the roots of the following quadratic equations, if they exist, by the method of completing the square. $$\displaystyle 2x^2 - 7x + 3 = 0$$
    Solution
    Given equation is $$2x^2 - 7x + 3 = 0$$
    $$\Rightarrow \left(x^2 - \dfrac{7}{2}x - \dfrac{7}{2}x + \left(- \dfrac{7}{2}\right)^2 \right ) - \left(-\dfrac{7}{2} \right)^2 + 6 = 0$$
    $$\Rightarrow \left( x-\dfrac { 7 }{ 2 }  \right) ^{ 2 }-\dfrac { 49 }{ 4 } +6=0$$
    $$\Rightarrow \left( x-\dfrac { 7 }{ 2 }  \right) ^{ 2 }-\dfrac { 25 }{ 4 } =0$$
    $$\Rightarrow \left( 2x-\dfrac { 7 }{ 2 }  \right) ^{ 2 }=\dfrac { 25 }{ 4 }$$
    $$\Rightarrow 2x-\dfrac { 7 }{ 2 } =\pm \sqrt { \dfrac { 25 }{ 4 }  } $$
    $$\Rightarrow  2x - \dfrac{7}{2} = \pm \dfrac{5}{2}$$
    $$\Rightarrow 2x-\dfrac { 7 }{ 2 } =\dfrac { 5 }{ 2 }$$   or    $$2x-\dfrac { 7 }{ 2 } =-\dfrac { 5 }{ 2 } $$
    $$\Rightarrow 2x=\dfrac { 5 }{ 2 } +\dfrac { 7 }{ 2 }$$   or   $$2x=-\dfrac { 5 }{ 2 } +\dfrac { 7 }{ 2 } $$
    $$\Rightarrow 2x=6$$ or $$2x=1$$
    $$\Rightarrow x=3$$ or $$x=\dfrac{1}{2}$$
    Thus, the roots are $$3$$ and $$\dfrac{1}{2}$$.
  • Question 8
    1 / -0
    Determine the value of $$k$$ for which the quadratic equation $$4x^2 - 3kx + 1 = 0$$ has equal roots.
    Solution
    Nature of the roots for a quadratic equation $$ax^2+bx+c=0$$ , can be determined by its discriminant
    $$ D=b^2-4ac$$
    Here, given quadratic equation is $$4x^2 - 3kx + 1 = 0$$
    Putting the value of $$a,b,c$$, we get
    $$D=(-3k)^2-4\times 4\times 1$$
    $$\Rightarrow 9k^2-16=0$$
    $$\Rightarrow 9k^2=16$$
    $$\Rightarrow k^2=\cfrac{16}{9}$$
    $$\Rightarrow k=\pm \cfrac{4}{3}$$
  • Question 9
    1 / -0
    Determine k such that the quadratic equation $$x^2 + 7(3 + 2k)+(1 + 3k)x = 0$$ has equal roots
    Solution

  • Question 10
    1 / -0
    Which of the following is a quadratic equation?

    Solution
    The first option is not a quadratic equation, since the degree of $$x$$ is $$1$$.
    Considering second option, we get 
    $$(x-1)(x+4)=x^{2}+1$$
    $$x^{2}+3x-4=x^{2}+1$$
    $$3x-5=0$$ .... a linear equation is one variable.
    $$x^{4}-x+5=0$$ is not a quadratic equation since the degree is $$4$$.

    Considering the last option
    $$(2x+1)(3x-4)=2x^{2}+3$$
    $$6x^{2}-5x-4=2x^{2}+3$$
    $$4x^{2}-5x-7=0$$ ..... Hence a quadratic equation.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now