Self Studies

Quadratic Equations Test - 32

Result Self Studies

Quadratic Equations Test - 32
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Find the discriminant of $$\displaystyle pqr{ x }^{ 2 }-8pqx+pr=0$$
    Solution
    $$\displaystyle D={ b }^{ 2 }-4ac$$
    Here, $$\displaystyle b=-8pq,a=pqr,c=pr$$
    $$\displaystyle D={ \left( -8pq \right)  }^{ 2 }-4\left( pq \right) \left( pr \right) $$
    $$\displaystyle =64{ p }^{ 2 }{ q }^{ 2 }-4{ p }^{ 2 }{ qr }^{ 2 }$$
  • Question 2
    1 / -0
    Which of the following is correct if one root of quadratic equation is real?
    Solution
    $$\displaystyle D\ge 0\quad \because $$ both are real
    $$\displaystyle D=0\quad \because $$ both are equal
    $$\displaystyle D\le 0\quad \because $$ both are imaginary
  • Question 3
    1 / -0
    Which of the following is correct, if the roots of quadratic equation are equal?
    Solution
    If both roots of a quadratic equation are equal and real, then
    $$\displaystyle D=0$$, 
    $$\displaystyle \propto =\beta $$
  • Question 4
    1 / -0
    Find the roots of equation by completing the square method:
    $$\displaystyle 3{ x }^{ 2 }-12qx+12{ q }^{ 2 }=0$$
    Solution
    $$\displaystyle 3{ x }^{ 2 }-12qx+12{ q }^{ 2 }=0$$
    $$\displaystyle { x }^{ 2 }-4qx+4{ q }^{ 2 }=0$$
    $$\displaystyle { x }^{ 2 }-2*2qx+4{ q }^{ 2 }=0$$
    $$\displaystyle \left( x-2q \right) ^2 =0$$
    $$\displaystyle \left( x-2q \right) \left( x-2q \right) =0$$
    $$\displaystyle x=2q\quad or\quad x=2q$$
  • Question 5
    1 / -0
    The solution of which of the following equations is same as that of $$40-6x=x^2$$?
    Solution
    Given, $$40-6x=x^2$$
    $$\Rightarrow x^{2}+6x-40=0$$ 
    $$\Rightarrow (x+3)^{2}-9-40=0$$ 
    $$\Rightarrow (x+3)^{2}-49=0$$
    Hence, the correct option is C.
  • Question 6
    1 / -0
    Value(s) of $$x$$ which satisfies the equation $$x^{2} + 2kx = \dfrac {j}{3}$$, where $$j$$ and $$k$$ are constants, is/are
    Solution
    We know the quadratic equation formula,
    $$\dfrac{-b\pm\sqrt{b^2-4ac}}{2a}$$
    $$x^2+2kx=\dfrac{j}{3}$$
    On cross multiplying, we get
    $$3x^2+6kx-j=0$$
    Here $$a = 3, b = 6k, c = -j$$
    On substituting the values, we get
    $$=$$ $$\dfrac{-6k\pm\sqrt{(6k)^2-4\times 3\times -j}}{2\times 3}$$
    $$=$$ $$\dfrac{-6k\pm\sqrt{36k^2+12 j}}{6}$$
    $$=$$ $$\dfrac{-6k\pm\sqrt{12(3k^2+j)}}{6}$$
    $$=$$ $$\dfrac{-6k\pm4\sqrt{3(3k^2+j)}}{6}$$
    Take $$2$$ as common, we get
    $$=$$ $$-3k\pm\dfrac{\sqrt{3(3k^2+j)}}{3}$$
    Therefore, $$x =-k\pm \dfrac{\sqrt{3(3k^2+j)}}{3}$$
  • Question 7
    1 / -0
    Among the following, find the values of $$x$$ that are real and satisfy the equation $$2x^2-5x-2=0$$
    Solution
    For finding the values of $$x$$ which satisfy the above equation, we solve the equation for $$x$$.
    $$2x^2 - 5x - 2 = 0$$
    $$\Rightarrow x = \cfrac{5 \pm \sqrt{25 + 16}}{4}$$
    $$\Rightarrow x = \cfrac{5 \pm \sqrt{41}}{4}$$
    $$\Rightarrow x = \cfrac{5 + \sqrt{41}}{4}, \cfrac{5 - \sqrt{41}}{4}$$
  • Question 8
    1 / -0
    Solve: $$p^2-12p+32=0$$
    Solution

    P2−12P+32

  • Question 9
    1 / -0
    If a, b and c are real, then both the roots of the equation $$\left( x-b \right) \left( x-c \right) +\left( x-c \right) \left( x-a \right) +\left( x-a \right) \left( x-b \right) =0$$ are always
    Solution
    Given equation is $$(x-b)(x-c)+(x-c)(x-a)+(x-a)(x-b)=0$$
    We can further simplify this equation by multiplying terms and taking common powers of $$x$$.
    $$(x^2-bx-cx+bc)+(x^2-cx-ax+ac)+(x^2-ax-bx+ab)=0$$
    $$\Rightarrow 3x^2-2ax-2bx-2cx+ab+bc+ca$$
    $$\Rightarrow 3{ x }^{ 2 }-2x\left( a+b+c \right) +ab+bc+ca=0$$
    We know that, discriminant of a quadratic equation of the form $$ax^2+bx+c=0$$ is given by:
    $$D=b^2-4ac$$

    $$\therefore \ D=[-2(a+b+c)]^2-4\times 3\times (ab+bc+ca)$$
    $$\Rightarrow D=4{ \left( a+b+c \right)  }^{ 2 }-4\times 3\left( ab+bc+ca \right) $$
    $$\Rightarrow 4\left( { a }^{ 2 }+{ b }^{ 2 }+{ c }^{ 2 }-ab-bc-ca \right) $$
    $$\Rightarrow 2\left[ { \left( a-b \right)  }^{ 2 }+{ \left( b-c \right)  }^{ 2 }+{ \left( c-a \right)  }^{ 2 } \right] $$
    Given that, $$a,\ b\text { and }c$$ are real.
    Hence, $$D\ge 0$$
    Therefore, roots are real.

    Hence, option C is correct.
  • Question 10
    1 / -0
    Let $$a$$ be the solution of the equation $$4x^2-12x+9=16$$, then the value of $$10a-15$$ is
    Solution
    $$4x^2 - 12x + 9 = 16$$
    $$\Rightarrow 4x^2 - 12x - 7 = 0$$
    $$\Rightarrow x = \cfrac{12 \pm \sqrt{144 + 112}}{8}$$
    $$\Rightarrow x = \cfrac{12 \pm 16}{8}$$
    $$\Rightarrow x = -0.5, 3.5$$
    Substituting the value of a in $$10a - 15$$, we get $$35 - 15 = 20$$ and $$5 - 15 = -10$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now