Self Studies

Quadratic Equations Test - 33

Result Self Studies

Quadratic Equations Test - 33
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Which of the following is a quadratic equation?
    Solution
    A quadratic equation can be expressed in the form $$ax^{2} + bx + c = 0$$.
    Here, the only equation that has a second degree variable is $$(a-1)x^{2}+(b -2)x + 5c$$ and all other equations have third and fourth degree variables.
    So, the quadratic equation is $$(a-1)x^{2}+(b -2)x + 5c$$. 
  • Question 2
    1 / -0
    $$h = -16t^{2} + vt + k$$
    The equation above gives the height $$h$$, in feet, of a ball $$t$$ seconds after it is thrown straight up with an initial speed of $$v$$ feet per second from a height of $$k$$ feet. Which of the following gives $$v$$ in terms of $$h, t$$ and $$k$$?
    Solution
    Given, $$ h = -16t^2 + vt + k $$
    $$ \Rightarrow  h + 16t^2 - k = vt $$
    $$ \Rightarrow  v = \dfrac { h + 16t^2 - k}{t} $$
    $$ \Rightarrow  v = \dfrac {h-k}{t} + 16t $$
  • Question 3
    1 / -0
    $$\sqrt{2k^2+17}-x=0$$
    If $$k > 0$$ and $$x = 7$$ in the equation above, what is the value of $$k$$?
    Solution
    Given expression is $$\sqrt{2k^2 + 17} - x = 0$$
    Given that $$x = 7$$, we thus get 
    $$\sqrt{2k^2 + 17} = 7$$
    $$\therefore 2k^2 + 17 = 49$$   [squaring both the sides]
    $$\therefore  2k^2 = 32$$
    $$\therefore k^2 = 16$$ 
    $$\therefore k = \pm4$$
    $$\implies k=4$$     $$[\because  k>0]$$
  • Question 4
    1 / -0
    If $$f(x) = x^{2} - 4x + 1, f(x)$$, the $$x$$-intercept of $$f(x)$$ is closest to which of the following?
    Solution
    Given $$f(x)=x^{2}-4x+1$$, $$f(x)$$ 
    Then $$y=x^{2}-4x+1$$ and $$y=0$$
    Then $$x^{2}-4x+1=0$$
    $$x=\dfrac{-(-4)\pm \sqrt{(-4)^{2}-4\times 1\times 1}}{2\times 1}$$
    $$\Rightarrow x=\dfrac{4\pm \sqrt{16-4}}{2}$$
    $$\Rightarrow x=\dfrac{4\pm \sqrt{12}}{2}$$
    $$\Rightarrow x=2\pm \sqrt{3}$$
    $$x=2-\sqrt{3}=2-1.72=0.27$$
    $$x=2+\sqrt{3}=2+1.73=3.73$$
    Then $$x$$-intercept of $$f(x)$$ is closest is $$(0.27,0))$$
  • Question 5
    1 / -0
    Find the value of $$x$$ which satisfies $$x^{2} - 8x + 13 = 0$$
    Solution
    Given equation is $${x}^{2} - 8x+13 =0$$
    $$a=1, b=-8$$ and $$c=13$$
    By using quadratic formula:
     $$x=\dfrac {-b\pm \sqrt {b^2-4ac}}{2a}$$

    $$\therefore x =\dfrac { (8\pm \sqrt{64-52})}{2} $$

           $$= \dfrac {(8\pm \sqrt{12})}{2} $$

           $$= \dfrac {(8\pm 2\sqrt3)}{2} $$

           $$= 4 \pm \sqrt3$$

  • Question 6
    1 / -0
    If A and B are whole numbers such that $$9A^{2} = 12A + 96$$ and $$B^{2} = 2B + 3$$, find the value of $$5A + 7B$$.
    Solution
    A,B are whole numbers
    $$9{ A }^{ 2 }=12A+96$$ & $${ B }^{ 2 }=2B+3$$
    $$9{ A }^{ 2 }-12A-96=0$$ & $${ B }^{ 2 }-2B-3=0$$
    $$3{ A }^{ 2 }-4A-32=0$$
    $$3{ A }^{ 2 }-12A+8A-32=0$$ & $${ B }^{ 2 }-3B+B-3=0$$
    $$(3A+8)(A-4)=0$$ & $$(B-3)(B+1)=0$$
    $$\therefore A=4,B=3$$ ($$\because A,B$$ are whole numbers $$\because (A\neq \cfrac { -8 }{ 3 }) $$ &$$(B\neq -1$$)
    $$5A+7B=5(4)+7(3)$$
    $$=41$$
  • Question 7
    1 / -0
    What are the solutions to $$3x^{2} + 12x + 6 = 0$$?
    Solution
    Solutions of the equation $$ ax^{ 2 }+bx+c = 0 $$ are given be $$ \dfrac { -b\pm \sqrt { { b }^{ 2 }-4ac }  }{ 2a } $$
    Hence, solutions of the given equation are $$ \dfrac { -12 \pm \sqrt { { 12 }^{ 2 }-4(3)(6) }  }{ 2(3) } $$
    $$= \dfrac { -12 \pm \sqrt { 144-72 }  }{ 6 }  $$
    $$= - 2 \pm \dfrac {\sqrt{72}}{6} $$
    $$= - 2 \pm \dfrac {6\sqrt{2}}{6} $$
    $$= -2 \pm \sqrt {2} $$
  • Question 8
    1 / -0
    $$\displaystyle x^2-\frac{k}{2} x= 2p$$
    In the quadratic equation above, k and p are constants. What are the solutions for x?
    Solution

    We know that for a quadratic equation of the form $$ax^2+bx+c=0$$,
    $$x=\dfrac{-b\pm\sqrt{b^2-4ac}}{2a}$$         [Quadratic formula]

    The given equation is $$x^2-\dfrac{k}{2}x=2p$$

    We can rewrite the equation as $$x^2-\dfrac{k}{2}x-2p=0$$

    $$\therefore \ x=\dfrac{\dfrac{k}{2}\pm\sqrt{\left ( \dfrac{-k}{2} \right )^2-4\times 1\times (-2p)}}{2\times 1}$$           [Quadratic formula]

    $$\Rightarrow \dfrac{\dfrac{k}{2}\pm\sqrt{ \dfrac{k^2}{4}+ 8p}}{2}$$

    $$\Rightarrow \dfrac{k\pm\sqrt{k^2+ 32p}}{4}$$

    $$\Rightarrow \dfrac{k}{4}\pm\dfrac{\sqrt{k^2+ 32p}}{4}$$


    Hence, option B is correct.

  • Question 9
    1 / -0
    Which of the following is a possible solution for $$x$$ in terms of $$k$$ for the equation $$x = \dfrac {2k}{x + 2}$$?
    Solution
    Given $$ x = \dfrac {2k}{x+2} $$
    $$ \Rightarrow  x^2 + 2x = 2k $$
    $$ \Rightarrow  x^2 + 2x - 2k = 0 $$
    Solutions of the equation $$ ax^{ 2 }+bx+c = 0 $$ are given by $$ \dfrac { -b\pm \sqrt { { b }^{ 2 }-4ac }  }{ 2a } $$
    Hence, solutions of the given equation are
     $$ =\dfrac { -2 \pm \sqrt { { 2 }^{ 2 }-4(1)(-2k) }  }{ 2(1) } \\= \dfrac { -2 \pm \sqrt { 4 +8k }  }{ 2 }  \\= 1 \pm \dfrac {2\sqrt{1+2k}}{2} \\= - 1 \pm \sqrt {1 + 2k} $$
    Thus one of the possible solutions of the given equation is $$ \sqrt {1 + 2k} - 1 $$.
  • Question 10
    1 / -0
    Which of the following is a possible value of $$x$$, if $$5x^{2}-  10x + 4 = 0$$?
    Solution
    Given expression is $$5x^2-10x+4=0$$

    Solutions of the equation $$ ax^{ 2 }+bx+c = 0 $$ are given be $$ \dfrac { -b\pm \sqrt { { b }^{ 2 }-4ac }  }{ 2a } $$

    Hence, solutions of the given equation are $$ \dfrac { 10 \pm \sqrt { { 10 }^{ 2 }-4(5)(4) }  }{ 2(5) }$$

                                                                            $$ = \dfrac { 10 \pm \sqrt { 100-80 }  }{ 10 }  $$

                                                                            $$= 1 \pm \dfrac {\sqrt{5}}{5} $$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now