Self Studies

Quadratic Equations Test - 40

Result Self Studies

Quadratic Equations Test - 40
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If $$x^{2}-5x+1=0$$, then $$x^{5}+\dfrac {1}{x^{5}}$$ is equal to
    Solution
    We have,
    $$\begin{aligned}{}{x^2} - 5x + 1 &= 0\\{x^2} + 1 &= 5x\\\frac{{{x^2} + 1}}{x} &= 5\\x + \frac{1}{x}& = 5\quad\quad\quad\dots(i)\end{aligned}$$

    On squaring both side of equation $$(i)$$,
    $${x}^{2}+\cfrac{1}{x^2}+2=25$$
    $$\Rightarrow {x}^{2}+\cfrac{1}{{x}^{2}}=25-2$$
    $$\Rightarrow {x}^{2}+\cfrac{1}{{x}^{2}}=23\quad\quad\quad\dots(ii)$$

    Multiplying equation $$(i)$$ and $$(ii)$$ we get,
    $$\left(x+\cfrac{1}{x}\right)\left({x}^{2}+\cfrac{1}{{x}^{2}}\right)=5\times 23$$
    $$\Rightarrow {x}^{3}+\cfrac{1}{{x}^{3}}+x+\cfrac{1}{x}=115$$
    $$\Rightarrow {x}^{3}+\cfrac{1}{{x}^{3}}=115-5$$
    $$\Rightarrow {x}^{3}+\cfrac{1}{{x}^{3}}=110\quad\quad\quad\dots(iii)$$

    Multiplying $$(ii)$$ and $$(iii)$$ we get,
    $$\left({x}^{2}+\cfrac{1}{{x}^{2}}\right)\left({x}^{3}+\cfrac{1}{{x}^{3}}\right)=23\times 110$$
    $$\Rightarrow {x}^{5}+\cfrac{1}{{x}^{5}}+x+\cfrac{1}{x}=2530$$
    $$\Rightarrow {x}^{5}+\cfrac{1}{{x}^{5}}+5=2530$$
    $$\Rightarrow {x}^{5}+\cfrac{1}{{x}^{5}}=2525$$
  • Question 2
    1 / -0
    If the equation $$(a^2+b^2)x^2-2(ac+bd)x+c^2+d^2=0$$ has equal roots, then 
    Solution
    For equation $$\left( { a }^{ 2 }+{ b }^{ 2 } \right) { x }^{ 2 }-2\left( ac+bd \right) x+\left( { c }^{ 2 }+{ d }^{ 2 } \right) =0$$ to has equal real roots, then the condition to be satisfied is,
    $${ B }^{ 2 }-4AC=0$$

    $$ \Rightarrow 4{ \left( ac+bd \right)  }^{ 2 }-4\left( { a }^{ 2 }+{ b }^{ 2 } \right) \left( { c }^{ 2 }+{ d }^{ 2 } \right) =0$$

    $$ \Rightarrow 8abcd-4{ a }^{ 2 }{ d }^{ 2 }-4{ b }^{ 2 }{ c }^{ 2 }=0$$

    $$ \Rightarrow 4{ \left( ad-bc \right)  }^{ 2 }=0$$

    $$ \Rightarrow ad=bc$$
  • Question 3
    1 / -0
    If the discriminant of quadratic equation $${ b }^{ 2 }-4ac=0$$, then the roots are: 
    Solution
    Given discriminant:
     $$D= b^{2}-4ac=0$$

    Let, $$ax^{2}+bx+c=0$$ be a standard quadratic
    equation then roots are - 

    $$x=\dfrac{-b\pm \sqrt{b^{2}-4ac}}{2a}= \dfrac{-b}{2a},\dfrac{-b}{2a}$$

    Hence, roots are real and equal.
  • Question 4
    1 / -0
    If $$\dfrac{\sqrt{1296}}{x}=\dfrac{x}{2.25}$$ then value $$x$$ is:
    Solution
    we know that, $$\sqrt {1296} = 36$$
      
    $$\dfrac {36}{x} = \dfrac{x}{2.25}$$

    $$x ^ 2  = 36 \times 2.25$$

    $$x ^ 2   = 81$$

    $$x = \pm \sqrt {81}$$

    $$x =\pm 9$$
  • Question 5
    1 / -0
    Find the value of $$x:$$
    $$x^2-4x+4=0$$
    Solution
    Given equation is:
    $$x^2-4x+4=0$$
    It can also be written as:
    $$x^2-2(2)(x)+(2)^2=0\dots (1)$$
    Above equation is of the form of following identity:
    $$(a-b)^2=a^2-2ab+b^2$$
    Hence, the equation $$(1)$$ can be written as follows:
    $$(x-2)^2=0$$ or
    $$(x-2)(x-2)=0$$
    $$x=2,2$$
  • Question 6
    1 / -0
    If an angle A of a $$\triangle ABC$$ satisfies 5cosA 7.3=0. than the roots of the quadratic equation $${ 9x }^{ 2 }+27x+20=0$$ are :
    Solution

  • Question 7
    1 / -0
    If $$\alpha ,\quad \beta $$ are the roots of the equation $${ x }^{ 2 }-2x+4=0,$$ then the value of $${ \alpha  }^{ 6 }+{ \beta  }^{ 6 }$$ is :
  • Question 8
    1 / -0
    If $$x ^ { 2 } - 5 x + 1 = 0$$ then $$\frac { x ^ { 10 } + 1 } { x ^ { 5 } }$$ is equal to:-
  • Question 9
    1 / -0
    $$(x+1)^2+(y-1)^2 +(x-5)^2+(y-1)^2$$ has the value equal to 
  • Question 10
    1 / -0
    Which of the following is a quadratic equation ?
    Solution
    For $$(A)$$
    $$6x^2=20-x^3$$

    $$\Rightarrow x^3+6x^2-20=0$$

    In this, the maximum power of $$x$$ is $$3$$.
    So, it is not a quadratic equation.

    For $$(B)$$
    $$x^2-\left(\dfrac{1}{x^2}\right)=\dfrac{7}{2}$$

    $$\Rightarrow 2x^4-2=7x^2$$

    $$\Rightarrow 2x^4-7x^2-2=0$$

    In this, the maximum power of $$x$$ is $$4$$.
    So, it is not a quadratic equation.

    For $$(C)$$
    $$\dfrac{3}{x}=4x^2$$

    $$\Rightarrow 3=4x^3$$

    In this, the maximum power of $$x$$ is $$3$$.
    So, it is not a quadratic equation.

    For $$(D)$$
    $$5x^2+7=3x$$
    $$\Rightarrow 5x^2-3x+7=0$$

    In this, the maximum power of $$x$$ is $$2$$.
    So, it is a quadratic equation.

    Hence, $$Op-D$$ is correct.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now