Self Studies

Quadratic Equations Test - 41

Result Self Studies

Quadratic Equations Test - 41
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Solve the quadratic equation by completing the square method: $${x}^{2}+8x-9=0$$
    Solution
    $$x^2+8x-9=0$$
    $$\Rightarrow x^2+2\times \left( 4\right) \times x +16-25=0$$
         $$\left( x+4\right)^2=25$$
         $$\left( x+4\right)^2=5^2$$
          $$x+4=\pm 5$$
    $$\Rightarrow x=1$$  and  $$-9$$
    Hence, the answer is $$1,-9.$$

  • Question 2
    1 / -0
    If the discriminant of  $$3 x ^ { 2 } - 2 x + K = 0$$  is zero then  $$\mathrm { K } =$$ _____
    Solution

  • Question 3
    1 / -0
    Which constant should be added and subtracted to solve the quadratic equation $${ 4x }^{ 2 }-\sqrt { 3x } -5=0$$ by the method of completing the square ? 
    Solution
    $$4x^2-\sqrt{3}x-5=0$$

    $$\Rightarrow (2x)^2-\dfrac{\sqrt{3}}{2}2x-5=0$$

    $$\Rightarrow (2x)^2-2\dfrac{\sqrt{3}}{4}2x+\left(\dfrac{\sqrt{3}}{4}\right)^2-\left(\dfrac{\sqrt{3}}{4}\right)^2-5=0$$

    $$\Rightarrow \left(2x-\dfrac{\sqrt{3}}{4}\right)^2-\dfrac{3}{16}-5=0$$      ...{$$\because$$  We know, $$a^2-2ab+b^2=(a-b)^2$$}

    Hence, we had to add $$\dfrac{3}{16}$$ to complete the square.
  • Question 4
    1 / -0
    Factors of $${ x }^{ 2 }+x\left( a+b \right) +ab$$ are
    Solution
    $$x^{2}+x(a+b)+ab$$

    comparing with $$ax^{2}+bx+c=0$$

    $$x^{2}+(a+b)x+ab=0$$

    comparing with $$Ax^{2}+Bx+C=0$$

    $$A=1$$      $$B=a+b$$      $$C=ab$$

    $$B^{2}-4ac= (a+b)^{2}-4\times 1\times ab$$

    $$=a^{2}+2ab+b^{2}-4ab$$

    $$=a^{2}-2ab+b^{2}$$

    $$B^{2}-4AC=(a-b)^{2}$$

    $$x=\dfrac{-B\pm \sqrt{B^{2}-4ac}}{2A}=\dfrac{-(a+b)\pm \sqrt{(a-b)^{2}}}{2\times 1}$$

    $$x=\dfrac{-a-b+a-b}{2}$$    OR   $$x=\dfrac{-a-b-(a-b)}{2}$$

    $$x=-b$$       OR    $$x=-a$$

    $$(x+b)=0$$    OR     $$(x+a)=0$$

    are the factors
  • Question 5
    1 / -0
    Quadratic equation among the following is:
    Solution

  • Question 6
    1 / -0
    Which constant must be added and subtracted to solve the Quadratic equation  $$9 x ^ { 2 } + \dfrac { 3 } { 4 } x - \sqrt { 2 }$$  by the method of completion the square.
    Solution

  • Question 7
    1 / -0
    For what value of $$c$$, the root of $$ (c-2) x^{2}+2(c-2) x+2=0$$ are not real 
    Solution
    Given the quadratic equation is $$ (c-2) x^{2}+2(c-2) x+2=0$$.
    Now the roots of the equation will be not real if the discriminant of the equation is less than $$0$$.
    Then,
    $$\{2(c-2)\}^2-4.2.(c-2)<0$$
    or, $$4\{(c-2)(c-4)\}<0$$
    or, $$(c-2)(c-4)<0$$
    or, $$2<c<4$$.
    So $$c\in (2,4)$$.
  • Question 8
    1 / -0
    Which constant must be added and subtracted to solve the quadratic equation $$9x^2 + \dfrac{3}{4}x - \sqrt{2} = 0$$ by the method of completing the square ?
    Solution
    Given equation is $$9x^2 + \dfrac{3}{4}x - \sqrt{2} = 0$$
    $$\Rightarrow (3x)^2 + 2\left(\dfrac{1}{8}\right)(3x) - \sqrt{2} = 0$$

    Hence, to make it a perfect square we must add and subtract $$\left(\dfrac{1}{8}\right)^2=\dfrac1{64}$$
  • Question 9
    1 / -0
    If $$(1+m^2)x^2-2(1+3m)x+(1+8m)=0$$. Then numbers of value(s) of m for which this equation has no solution.
    Solution
    We know that $$D=b^2-4ac$$

    $$D=4(1+3m)^2-4(1+m^2)(1+8m)$$

    $$=4(1+9m^2+6m-(1+8m+m^2+8m^3))$$

    $$=4(8m^2-2m-8m^3)$$

    $$=-8(4m^3-4m^2+m)$$

    $$=-8m(4m^2-4m+1)$$

    $$=-8m(2m-1)^2 < 0$$.........$$\because (2m-1)^2 \,  is \,  always +ve$$

    Hence infinitely many values.
  • Question 10
    1 / -0
    Discriminant is ................. for the equation $$5x-6=-\frac{1}{x}$$  
    Solution

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now