Self Studies

Quadratic Equations Test - 44

Result Self Studies

Quadratic Equations Test - 44
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Given that $$r$$ and $$s$$ are constants , the solution of the quadratic equation, $$r{x}^{2}=\dfrac{1}{s}x+3$$ , is:

    Solution

    Given, $$rx^{2}=\dfrac{1}{s}x+3$$

    $$\Rightarrow rx^{2}-\dfrac{1}{s}x-3=0$$

    WE know that in equation $$ax^{2}+bx+c=0$$

    The roots of equation 

    $$x=\dfrac{-b\pm \sqrt{b^{2}-4ac}}{2a}$$

    In given equation $$ rx^{2}-\dfrac{1}{s}x-3=0$$ 

     compare with above equation we get $$a=r$$, $$b=-\dfrac{1}{s}$$ and $$c=-3$$

    Then  $$x=\dfrac{-\dfrac{-1}{s}\pm \sqrt{\left (- \dfrac{1}{s} \right )^{2}-4\times r\times -3}}{2r}$$

    $$x=\dfrac{\dfrac{1}{s}\pm \sqrt{\dfrac{1}{s^{2}+12r}}}{2r}$$

    $$\Rightarrow x=\dfrac{1}{2sr}\pm\dfrac{\sqrt{\dfrac{1}{s^{2}}+12r}}{2r}$$ 


  • Question 2
    1 / -0
    The equation $$\displaystyle 9y^{2}(m+3)+6(m-3)y+(m+3)=0 $$, where $$m$$ is real has real roots then 
    Solution
    For an equation $$ a{x}^{2} + bx + c = 0 $$, the discriminant $$ \triangle = {b}^{2} -4ac $$ helps us understand the nature of the roots.

     When $$ \triangle \ge 0 $$ then roots are real and equal.

    $$ {[6(m-3)]}^{2} -4 \times 9(m+3) \times (m + 3)  \ge 0 $$
    $$ 36({m}^{2} + 9 +-6m) - 36( {m}^{2} + 9 + 6m)  \ge 0 $$
    $$ 36{m}^{2} + 324 - 216m - 36{m}^{2} -324 -216m  \ge 0 $$
    $$ -432m \ge 0 $$
    $$\therefore m \le 0 $$
  • Question 3
    1 / -0
    A ray emanating from (6,2) is incident on ellipse $$\displaystyle \frac{(x-1)^{2}}{45}+\frac{(y-2)^{2}}{20}=1$$ at (4.6) The equation of reflected ray (after 1st reflection ) is  
  • Question 4
    1 / -0
    The sum of all roots of the roots of the equations $$\displaystyle |x-1|^{2}-5|x-1|+6=0$$ is 
    Solution
    Given equation is $$ \left| x-1 \right| ^{ 2 }-5\left| x-1 \right| +6=0 $$

    We know that $$ \left| x-1 \right| ^{ 2 } $$ will be a positive value since it is a square.

    But $$ \left| x-1 \right| $$ can take both values of $$ (x-1) $$ or $$ -(x-1) = 1-x $$

    Hence, $$ \left| x-1 \right| ^{ 2 }-5\left| x-1 \right| +6=0 $$ can be written as both
    $${(x-1)}^{ 2 }-5(x-1) +6=0 $$  and $${(x-1)}^{ 2 }-5(1-x) +6=0 $$

    On simplifying $$ {(x-1)}^{ 2 }-5(x-1) +6=0 $$ we get $$ {x}^{2} -7x + 12 = 0 $$ whose sum of roots $$ = -\frac {-7}{1} = 7 $$

    And on simplifying $$ {(x-1)}^{ 2 }-5(x-1) +6=0 $$ we get $$ {x}^{2} + 3x + 2 = 0 $$ whose sum of roots $$ = -\frac {3}{1} = -3 $$

    Thus, sum of all 4 roots $$ 7 - 3 = 4 $$
  • Question 5
    1 / -0
    Solve the  equation: $$3+\dfrac {30}{{x}^{2}}=-\dfrac {21}{x}$$
    Solution
    Solve the equation as follows:
    $$3+\dfrac {30}{x^2}=-\dfrac {21}{x}$$
    $$\Rightarrow \dfrac {30}{x^2}+\dfrac {21}{x}+3=0$$
    $$\Rightarrow 30+21x+3x^2=0$$
    $$\Rightarrow x^2+7x+10=0$$
    Finding the roots of the above equation as:
    $$\Rightarrow x^2+5x+2x+10=0$$
    $$\Rightarrow x(x+5)+2(x+5)=0$$
    $$\Rightarrow x+2=0$$ and $$x+5=0$$
    $$\Rightarrow x=-2$$ and $$x=-5$$
  • Question 6
    1 / -0
    If $$(1+2x+x^2)^n=\displaystyle\sum^{2n}_{r=0}a_rx^r$$, then $$a_r=$$.
    Solution

  • Question 7
    1 / -0
    If the expression $$x^2+2(a+b+c)x+3(bc+ca+ab)$$ is a perfect square, then
    Solution
    $${ x }^{ 2 }+2(a+b+c)x+3(ab+bc+ac)\quad is\quad a\quad perfect\quad square\\ \therefore D=0\\ 4{ (a+b+c) }^{ 2 }-4.3(ab+bc+ac)=0\\ { a }^{ 2 }+b^{ 2 }+{ c }^{ 2 }+2(ab+bc+ac)-3(ab+bc+ac)=0\\ { a }^{ 2 }+b^{ 2 }+{ c }^{ 2 }-ab-bc-ac=0\\ \therefore \cfrac { 1 }{ 2 } [{ (a-b) }^{ 2 }+{ (b-c) }^{ 2 }+{ (c-a) }^{ 2 }]=0\\ \therefore a=b=c\\ As\quad sum\quad of\quad squares\quad is\quad zero\quad only\quad if\quad square\quad are\quad zero$$
  • Question 8
    1 / -0
    Number of possible value(s) of integer '$$a$$' for which the quadratic equation $$x^2+ax+16=0$$ has equal roots, is
    Solution
    Given the quadratic equation $$x^2+ax+16=0$$
    D $$=a^2 -4 \times 16 =0$$
    $$\Longrightarrow a=+8,-8$$
  • Question 9
    1 / -0
    Equation $$x^2 - x + q = 0$$ has imaginary roots if 
    Solution
    $$x^2-x+q=0$$
    It has imaginary roots, if
    $$D<0$$
    $$b^2-4ac<0$$
    $$(1)^2-4(1)(q)<0$$
    $$1<4q$$
    $$\cfrac{1}{4}<q$$
    $$\therefore q>\cfrac{1}{4}$$
  • Question 10
    1 / -0
    Discriminant is_________ for the quadratic equation $$x+\dfrac { 1 }{ x } =-5$$.
    Solution

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now