Self Studies

Arithmetic Progressions Test - 14

Result Self Studies

Arithmetic Progressions Test - 14
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0

    Progressions with an equal common difference are known as:

    Solution

    Progressions with an equal common difference are known as Arithmetic Progression. i.e the difference between any two consecutive terms is constant throughout the series, this constant difference is called common difference usually denoted by the letter d

    if a is the 1st term, d is a common difference, then the AP is represented by a, a+d, a+2d, a+3d .......... a + (n  1) d

    Hence, the correct option is (B).

  • Question 2
    1 / -0

    If a, 7, b, 23, c are in A.P. then the value of ‘c’ is:

    Solution

    Let d be the common difference. Then

    a5 = c = a + 4d ……….(i)

    a2 = a + d = 7 ……….(ii)

    a4 = a + 3d = 23 ……….(iii)

    Solving eq. (ii) and (iii),

    we get a = 1 and d = 8

    c = a + 4d = 1 + 4 × 8 = 31

    Hence, the correct option is (B).

  • Question 3
    1 / -0

    The next term of the A.P. 18, 32 and 50 is:

    Solution

    Given, 18, 32, 50

    32, 42, 52

    d=42-32=2

    Therefore, next term is 52+2=62=72

    Hence, the correct option is (A).

  • Question 4
    1 / -0

    The next two terms of the AP : k, 2k + 1, 3k + 2, 4k + 3, ………… are:

    Solution

    Explanation:

    Given: k, 2k + 1, 3k + 2, 4k + 3,....

    Here d = 2k + 1k = k + 1

    Therefore, the next two terms are:

    4k + 3 + k + 1 = 5k + 4

    and 5k + 4 + k + 1 = 6k + 5

    Hence, the correct option is (C).

  • Question 5
    1 / -0

    If a, b and c are in A. P., then the value of a  bb  c is:

    Solution

    If a, b and c are in A.P.,

    ba = cb

    (ab) = (bc)

    ab = bc

    dividing both sides by bc

    abb-c = bcb-c

     

    abb-c= 1

    Hence, the correct option is (D).

  • Question 6
    1 / -0

    The value of ‘k’ for which the numbers x, 2x+k, 3x+6 are in A.P. is:

    Solution

    2x+k-x=3x+6-2x+k

    2x+k-x=3x+6-2x-k

    On simplifying the LHS and RHS, we will get,

    x+k=x+6-k

    On taking x and k from the LHS to the RHS we get,

    x+6-k-x-k=0

    On simplifying further, we will get

    6-2k=0

    On taking -2k from the LHS to RHS, we get

    6=2k

    We can also write it as,

    2k=6

    Now, on dividing both the sides of the equation by 2, we get

    k=3

    Hence, when the value of k=3, the numbers x, 2x+k and 3x+6 form an AP. So, the AP will be x, 2x+3, 3x+6.

    Hence, the correct option is (C).

  • Question 7
    1 / -0

    The first four terms of the sequence an =  2n + 3 are:

    Solution

    Given an = 2n+3

    a1 = 2×1+3 = 2+3 = 5

    a2 = 2×2+3 = 4+3 = 7

    a3 = 2×3+3 = 6+3 = 9

    a4 = 2×4+3 = 8+3 = 11

    Therefore, the first four terms are 5, 7, 9, 11.

    Hence, the correct option is (A).

  • Question 8
    1 / -0

    If a, b and c are in A.P, then b =?

    Solution

    If a, b and c are in A.P., then

    b-a=c-b

    2b=a+c

    b=a+c2

    Hence, the correct option is (A).

  • Question 9
    1 / -0

    Which of the following is not an A.P.?

    Solution

    In 2, 4, 8, 16, ……..

    d = a2  a1 = 4  2 = 2

    And d = a3  a2 = 8  4 = 4

    Also d = a4  a3 = 16  8 = 8

    Here, common difference is not the same for all terms, therefore, it is not an AP.

    Hence, the correct option is (C).

  • Question 10
    1 / -0

    Which of the following is an A.P.?

    Solution

    In 12, 52, 72, 73, . = 1, 25, 49, 73, ………

    d = a2  a1= 25  1 = 24

    And d = a3  a2 = 49  25 = 24

    Also d = a4  a3 = 73  49 = 24

    Here, common difference is same for all terms, therefore, it is an AP.

    Hence, the correct option is (A).

  • Question 11
    1 / -0

    The common difference of the A.P whose an =3n + 7 is:

    Solution

    Given: an = 3n + 7

    Putting n=1,2,3, we get

    a = 3 × 1+7 = 3 + 7 = 4

    a2 = 3 × 2 + 7 = 6 + 7 = 1

    a3 = 3 × 3 + 7 = 9 + 7 = 2

    ∴ Common difference (d) = a2  a = 1  4 = 3

    Hence, the correct option is (C).

  • Question 12
    1 / -0

    If a, b and c are in A.P., then the relation between them is given by:

    Solution

    We know that if a, b, c, .... are in AP then 2nd term - 1st term = 3rd term - 2nd term

    b - a = c - b

     2b = a + c

    Hence, the correct option is (A).

  • Question 13
    1 / -0

    The list of numbers 10,  6,  2, 2, ……….. is:

    Solution

    Given: list of numbers  10,  6,  2, 2, ………..

    Here, 6  (10) = 6 + 10 = 4

    2  (6) = 2 + 6 = 4

    2  (2) = 2 + 2 = 4

    Therefore, the list of given numbers is an A.P with a common difference of 4.

    Hence, the correct option is (C).

  • Question 14
    1 / -0

    The common difference of the A.P. can be:

    Solution

    The common difference of the A.P. can be positive, e.g. 1, 2, 3, 4 ..... d is +ve and series is increasing.

    Negative e.g  4, 3, 2, 1 ...... d is - ve and series are decreasing.

    Or zero also and the AP becomes constant e.g 4, 4, 4, 4 ......

    Hence, the correct option (C).

  • Question 15
    1 / -0

    If the angles of a right-angled triangle are in A.P. then the angles of that triangle will be:

    Solution

    Let the three angles of a triangle be a  d, a and a+d.

    a  d + a + a + d = 180°

    3a = 180°

     

    a = 60°

    Therefore, one angle is 60° and the other is 90° (given).

    Let the third angle be x°, then

    60° + 90° + x° = 180°

    150° + x° =0°

    x°=180°  150° = 30°

    Therefore, the angles of the right-angled triangle are 30°, 60°, 90°.

    Hence, the correct option is (D).

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Selfstudy
Selfstudy
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now