Self Studies

Arithmetic Progressions Test - 18

Result Self Studies

Arithmetic Progressions Test - 18
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The sum of the first $$100$$ natural numbers is
    Solution
    We know, sum of a arithmetic progression, with first term as $$a$$ and common difference $$d$$ is
        $${S}_{n}=n[a+\frac{1}{2}(n-1)d]$$

    Here, given, $$a=1$$, $$d=1$$ and $$n=100$$
       $${S}_{100}=100[1+\displaystyle\dfrac{1}{2}(100-1)1]$$

                $$ =100[1+\dfrac{99}{2}]$$

                $$=100\times \displaystyle\frac{101}{2}$$

                $$=5050$$
  • Question 2
    1 / -0
    Find the sum of all odd natural numbers from 1 to 150.
    Solution
    Clearly, the odd natural numbers from $$1$$ to $$150$$ are $$1,3,5,...,149$$. 

    This is an AP with first term $$a=1$$, common difference $$d=2$$ and last term $$a_n=l = 149$$. 

    Let there be $$n$$ terms in this AP. 

    Then,

    $$a_n=149$$

    $$\Rightarrow a_n = a+(n-1)d$$

    $$149= 1+(n-1)\times2$$

    $$149=1+ 2n-2$$

    $$2n=150$$

    $$\therefore n=75$$

    $$\therefore$$ required sum $$=S_n=\dfrac n2[a+l]=\displaystyle \frac{75}2[1+149]=5625$$
  • Question 3
    1 / -0
    If the following sequence is an arithmetic progression, find its general term. 
    -5, 2, 9, 16, 23, 30, .......... is 

    Solution
    We can observe the difference between two consecutives terms is equal:
     $$2-(-5)=9-2= 16-9=23-16=7$$
    Hence, the sequence is an arithmetic progression with first term $$a=-5$$ and common difference $$d= 7$$.
    General term of an AP is $$t_n=a+(n-1)d$$
                                               $$t_n=-5+(n-1)\times 7$$
                                               $$t_n=7n-12$$
  • Question 4
    1 / -0
    Find $$S_{10}$$, if a = 6 and d = 3.
    Solution
    Given First term, $$a=6$$,
    Common difference, $$d=3$$
    Number of terms, $$n=10$$
    Sum of $$n$$ terms is given as
     $$S_n$$= $$\displaystyle \frac n2[2a+(n-1)d]$$   
    Substituting the values, we get                              
    $$S_{10} =\displaystyle \frac {10}2[2\times 6+(10-1)\times3]$$
          $$=5(39)$$
          $$=195$$
  • Question 5
    1 / -0
    How many terms of the sequence $$18, 16, 14,....$$ should be taken so that their sum is zero?
    Solution
    Here $$a=18,d=-2$$.
    Let there are $$n$$ terms so that the sum is zero.
    Now, $$S_n=\dfrac n2[2a+(n-1)d]=0$$
    $$\Rightarrow \dfrac n2[2\times18+(n-1)\times-2]=0$$
    $$\Rightarrow 36+(n-1)\times-2=0$$
    $$\Rightarrow n-1=18$$
    $$\Rightarrow n=19$$
    Therefore $$19$$ terms of the sequence has to be taken so that their sum is zero.



  • Question 6
    1 / -0
    How many terms are there in the A.P.: $$-1,\displaystyle\frac{-5}{6},\displaystyle-\frac{2}{3},\displaystyle\frac{-1}{2}, ....., \displaystyle\frac{10}{3}$$ ?
    Solution
    Given A.P. is $$-1,\ \dfrac{-5}{6},\ \dfrac{-2}{3},\ \dfrac{-1}{2},\ .....,\ \dfrac{10}{3}$$
    Here, first term $$(a)=-1$$ and the common difference $$(d)=\displaystyle \dfrac{-5}6-(-1)=\dfrac{1}6.$$
    Let $$n$$ be the number of terms of the given A.P.
    We know that the $$n_{th}$$ term of an A.P. is:
    $$a_n=a+(n-1)d\\$$
    Here, $$a_n=\dfrac{10}3$$

    $$\therefore \  a+(n-1)d=\dfrac{10}3$$

    $$\Rightarrow -1+(n-1)\times\dfrac{1}6=\dfrac{10}3$$

    $$\Rightarrow (n-1)\times\dfrac{1}6=\dfrac{13}3$$

    $$\Rightarrow n-1=26$$

    $$\Rightarrow n=27$$

    Therefore, there are $$27$$ terms in the give A.P.
  • Question 7
    1 / -0
    Find the sum of $$7 + 10\dfrac{1}{2} + 14+...+84$$.
    Solution
    Clearly, terms of the given series form an AP with first term and last term $$a=7$$ & $$ l= a_n = 84$$ respectively and  common difference $$d=\displaystyle \frac{21}2-7=\frac72$$. 
    Let the given series has $$n$$ terms. 
    Therefore,
    $$a_n=84=a+(n-1)d$$
    $$84= 7+(n-1)\times\frac72$$
    $$ (n-1)\times\frac72=77$$
    $$\therefore  n=23$$
    Here we use the following formula to calculate the sum of terms:
    $$S_n =\dfrac {n}{2} (a+l) $$
    $$\therefore$$Required sum $$=S_{23}=\displaystyle \dfrac{23}2(7+84)$$
    $$\Rightarrow S_{23}=\displaystyle \frac{23\times91}2=\dfrac{2093}2$$

  • Question 8
    1 / -0
    The fourth term of an A.P. is $$4$$. Then the sum of the first $$7$$ terms is ?
    Solution
    Let a and d be the first term and common difference of A.P. Then,
    $$a_4=4\Rightarrow a+3d=4$$                  ...(1)
    Now, $$S_n=\frac{n}{2}[2a+(n-1)d]$$
    $$ \therefore S_7=\frac72[2a+(7-1)d]$$
    $$\Rightarrow S_7=\frac72(2a+6d)$$
    $$\Rightarrow S_7=7(a+3d)=7\times4=28$$               ( $$\because of (1)$$)
    Therefore option B is correct

  • Question 9
    1 / -0
    Write the arithmetic progression when first term $$a = -1.5$$ and common difference $$d = -0.5$$.
    Solution
    Here $$a=-1.5$$ and $$d=-0.5$$.
    The $$n^{th}$$ term of the AP is $$a_n=a+(n-1)d$$
    $$\therefore a_1=a=-1.5$$
    $$a_2=a+d\\=-1.5+(-0.5)\\=-2$$
    $$a_3=a+2d\\=-1.5+2\times(-0.5)\\=-2.5$$
    $$a_4=a+3d\\=-1.5+3\times(-0.5)\\=-3$$ and so on.
    Therefore, the required AP is
    $$-1.5,-2,-2.5,-3,...$$
  • Question 10
    1 / -0
    Find the $$18^{th}$$ term of the A.P., $$\sqrt{2}, 3\sqrt{2}, 5\sqrt{2}$$.....
    Solution
    Here $$a=\sqrt2$$ and $$d=3\sqrt2-\sqrt2=2\sqrt2$$.
    The nth term of the  AP is $$a_n=a+(n-1)d$$
    $$\therefore a_{18}=a+17d$$
    $$=\sqrt2+17\times2\sqrt2$$
    $$=35\sqrt2$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Selfstudy
Selfstudy
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now