Self Studies

Arithmetic Progressions Test - 21

Result Self Studies

Arithmetic Progressions Test - 21
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    For an A.P. $$a = -18.9, d = 2.5 \ ,a_n = 3.6,$$ find $$n$$.
    Solution
    Here, $$a=-18.9, d=2.5$$ and $$a_n=3.6$$.
    Therefore, $$a_n=a+(n-1)d$$
    $$-18.9+(n-1)\times2.5=3.6$$
    $$\Rightarrow (n-1)\times2.5=22.5$$
    $$\Rightarrow n-1=9$$
    $$\therefore n=10$$

  • Question 2
    1 / -0
    Check whether $$-150$$ is a term of the AP:
    $$11, 8, 5, 2,...$$
    Solution
    Clearly, the given Sequence is an AP with first term $$a=11$$ and common difference $$d=8-11=-3$$.

    Let $$-150$$ be the $$nth$$ term of the given AP.

    $$\Rightarrow a_n=-150$$

    $$\Rightarrow a+(n-1)d=-150$$

    $$\Rightarrow 11+(n-1)\times-3=-150$$

    $$\Rightarrow (n-1)\times-3=-161$$

    $$\Rightarrow -3n+3=-161$$

    $$\Rightarrow -3n=-164\Rightarrow n=54\displaystyle \frac23$$

    Since, $$n$$ is not a natural number.

    Hence, $$-150$$ is not any term of given AP.
  • Question 3
    1 / -0
    In AP 
    Given a =2, d = 8, S$$_n$$ = 90, find n and a$$_n$$
    Solution
    In AP Given a =2, d = 8, S$$_n$$ = 90
    Since, $$S_{n}=\frac n2 [2a+(n-1)d] $$
    $$\Rightarrow 90=\frac n2[2\times 2+(n-1)8] $$
    $$\Rightarrow 90=\frac n2[4+8n-8] $$
    $$\Rightarrow 90=\frac n2[8n-4] $$
    $$\Rightarrow 180= n[8n-4] $$
    $$\Rightarrow 8n^2-4n-180=0  $$
    $$\Rightarrow 2n^2-n-45=0  $$
    $$\Rightarrow 2n^2-10n+9n-45=0  $$
    $$\Rightarrow 2n(n-5)+9(n-5)=0  $$
    $$\Rightarrow (2n+9)(n-5)=0  $$
    but  $$ 2n+9 \neq 0$$
    $$\therefore n-5=0$$
    $$\Rightarrow n=5 $$
    Since, $$a_n=a+(n-1)d $$
    $$\Rightarrow a_5=2+(5-1)8 $$
    $$\Rightarrow a_5=2+32 $$
    $$\Rightarrow a_5=34 $$
  • Question 4
    1 / -0
    Find the $$20th$$ term from the last term of the AP $$3,8, 13,....253.$$
    Solution
    The AP is $$3, 8, 13, ....,253$$
    Its first term $$= 3$$ and the common difference $$= 5$$
    The AP in the reverse order  will have the first term $$= 253$$ and the common difference $$= -5$$
    The $$20th$$ term from the end of the given AP $$=$$ The $$20th$$ term of the AP in the reverse order$$= a + 19d$$
    $$= 253 + 19 \times(-5) = 253 - 95 = 158$$
  • Question 5
    1 / -0
    Which term of the sequence $$ 3, 8, 13, 18, ........$$ is $$498$$.
    Solution
    Given series is : $$3,8,13,18,........$$
    $$a = 3,  l =498, d = 5, n = ? $$
    $$l =a + (n - 1)d $$
    $$498=3+(n-1)5$$
    $$498 - 3 = (n - 1)5$$
    $$\dfrac{495}{5}=n-1$$ 
    $$\therefore n =99+1  $$
    $$\therefore  n = 100 $$
    So $$100^{th}$$ term is $$498$$
  • Question 6
    1 / -0
    The $$16th$$ term of the AP: $$15,$$ $$\displaystyle \frac{25}{2},10,\frac{15}{2},........$$ is
    Solution
    Given AP: $$15,\dfrac{25}{2},10,\dfrac{15}{2},5........$$
    First term $$a = 15$$
    common difference $$ \displaystyle d=\dfrac{25}{2}-15=\dfrac{25-30}{2}=-\dfrac{5}{2}$$

    Since, $$a_n=a+(n-1)d $$

    $$\Rightarrow a_{16}=a+15d=15+15\times -\dfrac{5}{2}$$

    $$ \Rightarrow\dfrac{30-75}{2}=-\dfrac{45}{2}$$
    $$\therefore $$ Option B is correct.
  • Question 7
    1 / -0
    If $$\displaystyle \frac{6}{5},$$ $$a,4$$ are in AP, the value of $$a$$ is 
    Solution
    Given, $$\dfrac{6}{5},a,4$$ are in AP

    If $$a_1,\ a_2,\ a_3$$ are in AP, the common difference will be the same

    $$\Rightarrow d=a_2-a_1=a_3-a_2$$

    For the given terms: $$\dfrac{6}{5},\ a,\ 4$$

    $$\therefore$$  $$d= a-\dfrac{6}{5} = 4-a$$

    $$\Rightarrow$$               $$2a=\dfrac{6}{5}+4$$

    $$\Rightarrow$$                $$2a=\dfrac{6+20}{5}$$

    $$\Rightarrow$$                   $$a=\dfrac{26}{10}$$

                               $$=\dfrac{13}{5}$$
  • Question 8
    1 / -0
    Is $$51$$ a term of the AP, $$5, 8, 11, 14,........?$$
    Solution
    Given series is $$5,8,11,14,....$$
    Let $$51$$ be the $$ n^{th} $$ term. 
    $$\therefore a_n=51$$
    $$a = 5, d = 3$$
    We know, $$a_n=a+(n-1)d$$
    $$\therefore 51 = a + (n - 1)d$$
    $$51 = 5 + (n - 1)3$$

    $$ \dfrac{46}{3} = n - 1$$

    $$ \dfrac{46+3}{3} = n$$

    $$ n=\dfrac{49}{3}$$
    Since $$n$$ is not a natural no.
    $$51$$ is not a term of AP.
  • Question 9
    1 / -0
    The $$31st$$ term of the AP whose first two terms are respectively $$-2$$ and $$-7$$ is 
    Solution
    Given, $$\displaystyle a_{1}=-2 , a_{2}=-7 $$
    $$ \Rightarrow d=a_{2}-a_{1}= -7-(-2)  =  - 7 + 2 = - 5$$
    Since, $$ a_n=a+(n-1)d $$
    $$\displaystyle \Rightarrow a_{31}=a+30d=-2+30(-5)=-152$$
    $$\therefore $$ Option A is correct.
  • Question 10
    1 / -0
    The $$11th$$ term of AP whose $$3rd$$ term is $$11$$ and $$8th$$ term is $$26$$ is 
    Solution
    Given, $$ a_3=11 , a_8=26 $$
    if the terms are in $$A.P$$ then $$a_n = a+(n-1)d$$
     
     $$\displaystyle \Rightarrow a_3=a+2d=11\ \ \ \ \ .......(1)$$
     $$\displaystyle \Rightarrow  a_8=a+7d=26\ \ \ \ \ .......(2)$$

    Subtract equation $$(2)$$ from $$(1)$$
    we get,
    $$\Rightarrow - 5d = -15$$
    $$\therefore d = 3$$ 

    By putting $$d=3$$ in equation $$(1)$$ we get,
    $$ \Rightarrow  a +2(3) = 11 $$
    $$\therefore  a = 5$$

    $$\displaystyle \Rightarrow    a_{11}=a+10d$$  (by using formula)
                $$=5+10(3)$$
                $$=35$$
    $$\therefore $$ Option D is correct.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Selfstudy
Selfstudy
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now