Self Studies

Arithmetic Progressions Test - 23

Result Self Studies

Arithmetic Progressions Test - 23
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If $$\displaystyle t_{54}$$ an A.P is -61 and $$\displaystyle t_{4}=64$$ find $$\displaystyle t_{10}$$
    Solution
    $$t_{54}=a+53d=-64...........(1)$$
    $$t_4=a+3d=61.........(2)$$
    Subtracting eq 1 and 2
    $$50d=-125$$
    $$d=-2.5$$
    Substitute  the value of d in eq 2
    $$a=64-(3\times -2.5)$$
    $$a=64+7.5=71.5$$

    $$t_{10}=a+9d$$
    $$\Rightarrow 71.5+(9\times -2.5)$$
    $$\Rightarrow 71.5-22.5=49$$
  • Question 2
    1 / -0
    Find the number of terms in the sequence$$:\ 4,\  12,\ 20,\ .\ .\ .\ 108$$
    Solution
    Given sequence:  $$4,\ 12,\ 20,\ .\ .\ .\ 108$$

    Here first term $$a=4$$, 
    common difference $$d=12-4=8$$ 
    and last term $$ a_n=108$$

    Since, $$a_n=a+(n-1)d $$
    $$\Rightarrow 108=4+(n-1)8 $$
    $$\Rightarrow 104=8n-8 $$
    $$\Rightarrow 112=8n $$
    $$\Rightarrow  n=14 $$

    So, the number of terms in the given sequence is $$14$$
  • Question 3
    1 / -0
    The sum of the first $$40$$ natural numbers is
    Solution
    Sum of '$$n$$' natural numbers $$=\dfrac { n(n+ 1) }{ 2 } $$

    $$\therefore$$ sum of $$40$$ natural numbers $$= \dfrac {40(40+ 1) }{ 2 } = 820$$.
    hence, option B is correct.
  • Question 4
    1 / -0
    If $$ 5, k, 11$$ are in $$AP,$$ then the value of $$k$$ is 
    Solution
    If $$5, k$$ and $$11$$ are in AP, then
    $$k - 5 = 11 - k$$
    $$\therefore 2k= 16$$
    $$\therefore  k= 8$$
  • Question 5
    1 / -0
    30th term of the A.P. : 10, 7, 4,.........., is :
    Solution
    nth term of an AP is given by $$\qquad \qquad \\ { t }_{ n }\quad =\quad a\quad +\quad (n\quad -\quad 1)d$$

    In the given sequence, 'a' = 10, 'd' = -3, 'n' = 30.
    So, 30th term = $$\qquad \qquad \\ \qquad { t }_{ 30 }\quad =\quad 10\quad +\quad (30\quad -\quad 1)(-3)\\ \Longrightarrow { t }_{ 30 }\quad =\quad 10\quad -\quad 87\quad =\quad -77$$.

  • Question 6
    1 / -0
    The sum of the first $$22$$ terms of the A.P. $$8, 3, -2, ..........$$ is 
    Solution
    Given, $$\displaystyle 8, 3, -2,.........$$ are in A.P.
    Thus, first term and common difference of the A.P. is $$8$$ and $$-5$$ respectively. 
    $$\displaystyle a=8,d=3-8=-5,n=22$$
    $$\displaystyle { S }_{ n }=\frac { n }{ 2 } \left\{ 2a+\left( n-1 \right) d \right\} $$
    $$\displaystyle =\frac { 22 }{ 2 } \left\{ 16+\left( 21 \right) \left( -5 \right)  \right\} $$
    $$\displaystyle =11\left\{ 16-105 \right\} $$
    $$=-979$$
  • Question 7
    1 / -0
    If $$\displaystyle { a }_{ n }=2n$$ of an A.P., then common difference is :
    Solution
    Given, $$\displaystyle { a }_{ n }=2n$$ 
    If, $$n=1$$, $$a_1=2$$,
    $$n=2$$, $$a_2=4$$
    $$n=3$$, $$a_3=6$$
    $$\therefore \displaystyle { a }_{ 1 }=2,{ a }_{ 2 }=4,{ a }_{ 3 }=6$$
    $$\displaystyle \therefore $$ Series is $$2, 4 ,6, .....$$
    $$\therefore$$ common difference, $$\displaystyle  $$ $$\displaystyle d=4-2=2$$
  • Question 8
    1 / -0
    If 7 th term of AP is 34 and 13th term is 64 then its 18th term is :
    Solution
    Given, 7th term = 34 and 13th term = 64.

    $$a\quad +\quad 6d\quad =\quad 34\\ a\quad +\quad 12d\quad =\quad 64$$.
    From the above two equations, we can deduce, 'd' = 5.

    $$\qquad -6d\quad =\quad -30\\ \Longrightarrow \quad d\quad =\quad 5$$.               [subtracting both equations]

    Substituting 'd' = 5 in either equation, will give 'a'.
    $$\qquad \qquad a\quad +\quad 6d\quad =\quad 34\\ \Longrightarrow \qquad a\quad +\quad 6(5)\quad =\quad 34\\ \Longrightarrow \qquad a\quad +\quad 30\quad =\quad 34\quad or\quad a\quad =\quad 4$$.

    First term 'a' = 4.

    $$\qquad \qquad { t }_{ 18 }\quad =\quad a\quad +\quad 17d\\ \Longrightarrow \qquad { t }_{ 18 }\quad =\quad 4\quad +\quad 17(5)\\ \Longrightarrow \qquad { t }_{ 18 }\quad =\quad 89$$.

    18th term of the sequence = 89.
  • Question 9
    1 / -0
    The sum of 2 + 4 + 6 + 8 + .......... + 80 is :
    Solution
    Given sequence is: $$2+4+6+.......+80$$
    Here, $$\displaystyle a=2,d=4-2=2,$$$$\displaystyle { a }_{ n }=80$$
    $$\displaystyle { a }_{ n }=a+\left( n-1 \right) d$$
    $$\displaystyle \Rightarrow  80=2+\left( n-1 \right) 2$$
    $$\displaystyle \Rightarrow  80=2n\Rightarrow n=40$$
    $$\Rightarrow  \displaystyle { S }_{ 40 }=\frac { 40 }{ 2 } \left\{ 2a+\left( n-1 \right) d \right\} $$
    $$\displaystyle =20\left\{ 4+78 \right\}$$
    $$ =20\times 82$$
    $$=1640$$
  • Question 10
    1 / -0
    The sum of the first $$1000$$ positive integer is
    Solution
    Sum of '$$n$$' natural numbers $$=$$ $$ \dfrac { n(n+ 1) }{ 2 } \\ $$.
    So, sum of first $$1000$$ natural numbers $$=$$ $$ \dfrac { 1000(1000+ 1) }{ 2 } = 500(1001)= 500500\\ $$.
    Hence, option A is correct.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Selfstudy
Selfstudy
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now