Self Studies

Arithmetic Progressions Test - 33

Result Self Studies

Arithmetic Progressions Test - 33
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If the sum of all the terms of an A.P.: $$25, 22, 19, ......,$$ $$t_n$$ is $$116,$$ then $$n$$ is
    Solution
    Let number of terms be $$n$$

    $$ \therefore \displaystyle \frac{n}{2} [50 + (n - 1) \times (-3)]  = 116$$

    $$\implies \displaystyle \frac 12[50n-3n^2+3n]=116$$

    $$ \implies 3n^2 - 53n + 232 = 0 \implies n = \dfrac{29}{3} \ or \  8 $$

    Hence, $$n = 8$$
  • Question 2
    1 / -0
    In an A.P., if the common difference is $$2$$ and sum up to $$n$$ terms is $$49$$ and $$7^{th}$$ term is $$13$$, then value of $$n$$ is equal to?
    Solution
    Given: $$a_{7}=a_{1}+6d$$
    It is given that the common difference is 2.
    Therefore
    $$a_{7}=a_{1}+12$$
    $$13=a_{1}+12$$
    $$a_{1}=1$$.

    Now sum of n terms is given by: 
    $$S_{n}=\dfrac{n}{2}[2a_{1}+(n-1)d]$$

    $$49=\dfrac{n}{2}[2+(n-1)2]$$

    $$49=n(1+(n-1))$$

    $$49=n^{2}$$

    $$n=7$$
    Hence the value of n is 7.
  • Question 3
    1 / -0
    In an A.P., if $$a = 3.5$$, $$d = 0$$, $$n = 101$$, then $$a_n$$ will be
    Solution
    $$a = 3.5, d=0$$ and $$n= 101$$
    $$a_n = a + (n-1)\times d$$
    $$a_n = 3.5 + 100\times0$$
    $$a_n= 3.5$$
  • Question 4
    1 / -0
     For  an  A.P.  $$a_1,a_2,...a_n$$   and $$a_1=\frac{5}{2},a_{10}=16$$.
     If  sum of $$n$$  terms is $$110$$  then $$n$$  equals

    Solution
    $$a_{1}=\dfrac{5}{2}$$
    Let the common difference be d.
    Then
    $$a_{10}=a_{1}+9d$$

    $$16=\dfrac{5}{2}+9d$$

    $$\dfrac{27}{2}=9d$$

    $$d=\dfrac{3}{2}$$

    Hence

    $$S_{n}=\dfrac{n}{2}(2(\dfrac{5}{2})+(n-1)\dfrac{3}{2})$$

    $$=\dfrac{n}{4}(10+3(n-1))$$

    $$=\dfrac{n}{4}(7+3n)$$

    Now $$S_{n}=110$$
    Hence
    $$\dfrac{n}{4}(7+3n)=110$$

    $$n(7+3n)=440$$

    $$3n^{2}+7n-440=0$$

    $$n=11$$ and $$n=\dfrac{-40}{3}$$
    Since
    $$n=\dfrac{-40}{3}$$ is not possible, hence $$n=11$$
  • Question 5
    1 / -0
    If $$8^{th}$$ term of an A.P is $$15$$, then the sum of $$15$$ terms is
    Solution
    $$a_{8}=a_{1}+7d$$
    Hence 
    $$a_{1}+7d=15$$ ...(i)
    $$S_{15}=\dfrac{n}{2}[2a_{1}+(15-1)d]$$

    $$S_{15}=\dfrac{15}{2}[2a_{1}+14d]$$

    $$=15(a_{1}+7d)$$

    $$=15(15)$$ ...from i
    $$=225$$.
  • Question 6
    1 / -0
    The $$11^{th}$$ term of the series $$ \displaystyle -5,\frac{-5}{2},0,\frac{5}{2},\cdots$$ is
    Solution
    $$a = -5, d=\dfrac{5}{2}$$ and $$n= 11$$.
    $$a_{11} = -5 + (11-1)\times d$$
    $$a_{11} = -5 + 10\times\dfrac{5}{2}$$
    $$a_{11}=  20$$
  • Question 7
    1 / -0
    If the first term of an AP is $$5$$ and the common difference is $$-2,$$ then the sum of the first $$6$$ terms is
    Solution
    Sum of an AP is: $${\dfrac{n}{2}}\times[{2a+(n-1)d}]$$
    $$a = 5, d= -2, n=6$$

    Sum $$={\dfrac{6}{2}}\times[{(2\times5)+(6-1)\times(-2)}]$$

    $$= 3\times(10-10)$$
    $$= 0$$
  • Question 8
    1 / -0
    In an AP if $$a = 1$$, $${ a }_{ n }=20$$ and $${ S }_{ n }=399$$, then $$n$$ is
    Solution
    $$a = 1$$
    $$a_n = 20$$
    $$S_n= 399$$
    Then,
    $$\Rightarrow a_n=a+(n-1)d$$
    $$\Rightarrow 20=1 + (n-1)d$$
    $$\Rightarrow 19=(n-1)d$$
    Also given, 
    $$S_n = \dfrac{n}{2} \times$$$$ [2a+(n-1)d]$$
    Substituting values, 
    $$399\times 2=n( 2+19)$$
    $$\Rightarrow 798$$ = $${n\times21}$$
    $$n = 38$$
  • Question 9
    1 / -0
    If the common difference of an AP is $$5,$$ then what is $$a_{18}-a_{13}$$ ?
    Solution
    Hint:   $$n^{th }$$ term of an A.P. is $$a_n=a+(n-1)d$$ where $$a$$ is first term and $$d$$ is common difference.

    Given:
    value of common difference $$,d=5$$

    Step 1 : Find the value of $$18^{th}$$ term i.e, $$a_{18}$$ by replacing $$n$$ with $$18$$ in the $$n^{th}$$ term of the A.P
    $$\Rightarrow a_n=a+(n-1)d$$
    $$\Rightarrow a_{18}=a+(18-1)d$$     
    $$\therefore a_{18}=a+17d$$

    Step 2 :  Find the value of $$13^{th}$$ term i.e, $$a_{13}$$ by replacing $$n$$ with $$13$$ in the $$n^{th}$$ term of the A.P
    $$\Rightarrow a_n=a+(n-1)d$$
    $$\Rightarrow a_{13}=a+(13-1)d$$     
    $$\therefore a_{13}=a+12d$$

    Step 3 : Find the difference between $$a_{18}$$ and $$a_{13}$$
    $$a_{18}-a_{13}$$
    $$=[a+17d]-[a+12d]$$
    $$=a+17d-a-12d$$
    $$=5d\\=5\times5\\=25$$

    Final step : Hence, $$a_{18}-a_{13}=25$$
  • Question 10
    1 / -0
    Which term of the AP, $$21, 42, 63, 84,...$$ is $$210?$$
    Solution
    First term of the AP, $$a=21$$
    Common difference $$d=21$$
    $${n}^{th}$$ term is $$210$$
    Then,
    $$210 = a + (n-1)d$$
    $$210= 21 + (n-1)\times21$$
    $$210= 21n$$
    Therefore, $$n=10$$
    Hence, 210 is $${ 10 }^{ th }$$ term of the series.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Selfstudy
Selfstudy
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now