Self Studies

Arithmetic Progressions Test - 44

Result Self Studies

Arithmetic Progressions Test - 44
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If three times the $$9$$th term of an A.P is equal to five times its $$13$$th term, then which of the following term will be zero.
    Solution
    According to the question $$3(a+8d)=5(a+12d)$$
    $$\Rightarrow 3a+24d=5a+60d$$
    $$\Rightarrow 2a+36d=0$$
    $$\Rightarrow a+18d=0$$
    $$\Rightarrow a+(19-1)d=0$$
    Hence $$19^{th}$$ term is zero
  • Question 2
    1 / -0
    The total two-digit numbers which are divisible by $$5$$, are
    Solution
    $$10, 15, 20, ........ 95$$
    $$n$$th term of AP$$=a+(n-1)d$$
    $$\Rightarrow 95=10+(n-1)5$$
    $$\Rightarrow 95=10+5n-5$$
    $$\Rightarrow 95=5n+5$$
    $$\Rightarrow n=18$$
    Hence, required numbers $$=18$$
  • Question 3
    1 / -0
    If an A.P is given by $$17, 14, ......-40$$, then $$6$$th term from the end is
    Solution
    Given an AP is 17,14...........................-40
    Then we get AP is -40,-37,.............14,17
    Then d=3,a=-40  n=6
    Therefore, $$a_{6}=a+(n-1)d=(-40)+(6-1)3=-40+15=-25$$



     

  • Question 4
    1 / -0
    How many terms are there in the sequence $$15\cfrac{1}{2}, 13, ......-47$$?
    Solution
    Given series is $$15 \dfrac {1}{2}, 13, ....., -47$$
    $$a_n=a+(n-1)d$$
    $$\therefore -47=\dfrac{31}{2}+(n-1)\left(\dfrac{-5}{2}\right)$$
    $$-47=\dfrac{31}{2}-\dfrac{5n}{2}+\dfrac{5}{2}$$
    $$-47=18-\dfrac{5n}{2}$$
    $$\dfrac{5n}{2}=65$$
    $$\therefore n=\dfrac{65\times 2}{5}=26$$
    Hence number of terms are $$26$$
  • Question 5
    1 / -0
    Find the $$n^{th}$$ term and, hence, the $$25^{th}$$ term of the following AP: $$2, 5, 8, 11$$,.........
    Solution
    Given series, 2, 5, 8, 11, ... is in AP
    Here
    First term $$a = 2$$
    Common difference $$d = 5 - 2$$
                                          $$= 8 - 5 $$
                                          $$= 3$$
    We know that, general term
     $$\displaystyle { t }_{ n }=a+\left( n-1 \right) d$$
         $$\displaystyle =2+\left( n-1 \right) 3$$
         $$\displaystyle =2+3n-3$$
         $$\displaystyle =3n-1$$
    $$\displaystyle { t }_{ 25 }=3\times 25-1$$
          $$=75-1=74$$
  • Question 6
    1 / -0
    If the first, second and last term of an A.P. are $$x,y$$ and $$2x$$ respectively, its sum is
    Solution
    Here $$a_1=x,$$ $$a_2=y$$ and $$a_n=2x$$ .
    $$\therefore \ $$ First term, $$a=x$$ and common difference, $$d=y-x$$
    Since, $$a_n=a+(n-1)d $$
    $$\Rightarrow 2x=x+(n-1)(y-x) $$
    $$\Rightarrow x=(n-1)(y-x) $$
    $$\displaystyle \Rightarrow \frac {x}{y-x}=n-1 $$
    $$\displaystyle \Rightarrow \frac {x}{y-x}+1=n $$
    $$\displaystyle \Rightarrow n=\frac {y}{y-x}$$

    Now, we know that, $$S_n= \dfrac n2(a+a_n) $$

    $$\therefore \ S_n= \displaystyle \dfrac {\frac {y}{y-x}}2(x+2x) $$

    $$\Rightarrow S_n= \displaystyle \dfrac {\frac {y}{y-x}}2(3x) $$

    $$\Rightarrow S_n=\displaystyle \dfrac {3xy}{2(y-x)} $$

    Hence, option B is correct.
  • Question 7
    1 / -0
    If in an A.P, $${a}_{9}=0, {a}_{19}=k$$, then $${a}_{29}$$ is
    Solution
    Let $$a$$ and $$d$$ be the first term and common difference of given AP.
    Since, $$a_9 = 0 \Rightarrow a+8d=0$$         ....(1)   [using $$a_n = a+(n-1)d$$]
    Similarly,
    $$a_{19} = k \Rightarrow a+18d=k$$         ....(2)
    On subtracting (1) from (2). we get
    $$a+18d-a-8d = k$$
    $$\Rightarrow  10d=k $$
    $$\Rightarrow  d=\dfrac k{10} $$
    By substituting $$d=\dfrac k{10} $$ in (1), we get
    $$a+\dfrac {8k}{10}=0$$
    $$\Rightarrow a= -\dfrac {8k}{10}$$
    Now, $$a_{29}=a+28d = -\dfrac {8k}{10}+\dfrac {28k}{10} = 2k$$
    Hence, option D is correct.
  • Question 8
    1 / -0
    The AP whose first term is 10 and common difference is 3 is
    Solution
    If  $$a_1$$  is  the  first  term,  then  the  nth  term  is  $$ a_1  + (n-1)d $$,  where  $$d$$  is  the  common  difference
    Here $$ a_1  =  10,  d  =  3,$$
    Hence,
    $$ a_2 = a_1 + (2-1)d = 10 + 3 = 13 $$
    $$ a_3 = a_1 + (3-1)d = 10 + 6 = 16 $$ and  so  on.....
  • Question 9
    1 / -0
    Which term of the A.P $$5,15, 25 -----$$ will be $$100$$ more than its $$31^{st}$$ term?
    Solution
    The given A.P is $$5,15,25.......$$ where the first term is $$a=5$$ and the common difference $$d$$ will be calculated by subtracting the first term from the second term as shown below:

    $$d=15-5=10$$

    Now, $$31$$st term$$=a+30d$$, substituting the values of $$a$$ and $$d$$, we get:

    $$31$$st term$$=5+(30\times10)=5+300=305$$

    It is given that the A.P of the given terms is $$100$$ more than its $$31$$st term, thus, we have:

    $$a_{ n }=305+100=405\\ \Rightarrow a+(n-1)d=405\\ \Rightarrow 5+(n-1)10=405\\ \Rightarrow (n-1)10=405-5\\ \Rightarrow (n-1)10=400\\ \Rightarrow n-1=\dfrac { 400 }{ 10 } \\ \Rightarrow n-1=40\\ \Rightarrow n=40+1\\ \Rightarrow n=41$$

    Hence, the $$41$$st term of the given A.P will be $$100$$ more than its $$31$$st term.
  • Question 10
    1 / -0
    If $$S=18+17\cfrac{1}{3}+16\cfrac{2}{3}+.......=242$$, then the number of terms are:
    Solution
    Given Series in A.P.
    Here ,
    $$a = 18, d = \dfrac{52}{3}-18 =\dfrac{ 52-54}{3} = -\dfrac{2}{3} $$ and  $$S_{n} = 242$$
    We know,
    $$S_{n} = \dfrac{n}{2} \left[2a+\left(n-1\right)d\right]$$

    $$\Rightarrow 242= \dfrac{n}{2} \left[2\times 18+\left(n-1\right)\dfrac{-2}{3}\right]$$

    $$\Rightarrow 484 = n\left[36+\left(\dfrac{-2}{3}n+\dfrac{2}{3}\right)\right]$$

    $$\Rightarrow 484 = n\left[\dfrac{108-2n+2}{3}\right]$$

    $$\Rightarrow 1452 = n\left[110-2n\right]$$

    $$\Rightarrow 1452= 110n-2n^2$$

    $$\Rightarrow 2n^2-110n+1452 =0$$

    $$\Rightarrow 2 \left(n^2-55n+726\right) =0$$

    $$\Rightarrow n^2-55n+726 =0$$

    $$\Rightarrow n^2-33n-22n+726=0$$

    $$\Rightarrow n\left(n-33\right)-22\left(n-33\right)=0$$

    $$\Rightarrow \left(n-33\right)\left(n-22\right) =0$$

    $$n = 33$$  and  $$n = 22$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Selfstudy
Selfstudy
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now