Self Studies

Arithmetic Progressions Test - 55

Result Self Studies

Arithmetic Progressions Test - 55
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The tenth term of an A.P. : $$\sqrt {2}, 3\sqrt {2}, 5\sqrt {2}, 7\sqrt {2}$$, ..... is:
    Solution
    Given A.P. is $$\sqrt {2}, 3\sqrt {2}, 5\sqrt {2}, 7\sqrt {2}....$$

    Its first term, $$a = \sqrt {2}$$

    Common difference, $$d = 3\sqrt {2} - \sqrt {2} = 2\sqrt {2}$$

    To find out: The tenth term of the A.P.

    We know that, the $$n^{th}$$ term of an A.P. is $$t_n=a+(n-1)d$$

    $$\therefore \ T_{10} = a + (10 - 1)d$$

    $$\Rightarrow  a + 9d$$

    $$\Rightarrow  \sqrt {2} + 9(2\sqrt {2})$$

    $$\Rightarrow  \sqrt {2} + 18\sqrt {2}$$

    $$\therefore \ t_{10}= 19\sqrt {2}$$

    Hence, the tenth term of the given A.P. is $$19\sqrt {2}$$.
  • Question 2
    1 / -0
    Match the APs given in column A with suitable common differences given in column B.

             Column A                                                Column B

    A. $$-2, 2, 6, 10,...$$                                                1.  $$\dfrac{2}{3}$$

    B. $$a = 18, n = 10, a_n = 0$$                                   2. $$-5$$


    C. $$a = 0, a_{10} = 6$$                                                 3.  $$4$$

    D. $$a_2 = 13, a_4 =3$$                                               4. $$-4$$

                                                                                   5. $$-2$$

                                                                                   6. $$\dfrac{1}{2}$$

                                                                                   7.  $$5$$
    Solution
    1.  Given sequence $$A:-2,\ 2,\ 6,\ 10,\ ...$$
         Here, first term $$a=-2$$ and common difference $$d=6-2=4$$
         $$\therefore\ A\rightarrow 3$$

    2. Given, $$B:a=18,n=10,a_n=0$$
         Now, $$a_n=a+(n-1)d=0$$
         $$\Rightarrow 9d=-18$$
         $$\Rightarrow d=-2$$
         $$\therefore\ B\rightarrow 5$$

    3. Given, $$C:a=0,a_{10}=6$$
        $$\Rightarrow a+9d=6$$
        $$\Rightarrow d=\dfrac69$$
        $$\Rightarrow d=\dfrac23$$
        $$\therefore C\rightarrow1$$

    4. Given, $$D:a_2=13,a_{4}=3$$
         $$\Rightarrow a+d=13$$                           ...(i)
         $$\Rightarrow a+3d=3$$                           ...(ii)
         On subtracting (i) from (ii), we get
         $$2d=-10$$
         $$\Rightarrow d=-5$$ 
         $$\therefore D\rightarrow 2$$
  • Question 3
    1 / -0
    Find the sum of the first $$15$$ terms of the sequences having $$n$$th term as
    $${ x }_{ n }=6-n$$
    Solution
    Formula,

    $$S_n $$=$$\frac{n}{2}[2a+(n-1) \times d]$$

    Given,

    $$a_n=6-n$$

    $$a_1=6-1=5$$

    $$a_{2}=6-2=4$$

    $$d= 4-5 = -1 $$

    $$S_{15} $$= $$\frac{15}{2}[2(5)+(15-1) \times (-1)]$$

    $$\therefore S_{15}=-30$$
  • Question 4
    1 / -0

    Identify which of the following list of numbers is an arithmetic progression?

    Solution
    The sequence given in option '$$a$$' to '$$b$$' do not have a fixed difference between its consecutive numbers. Only the sequence $$12,18,24, 30,...$$ has a difference of $$6$$ between its two consecutive numbers. Thus the correct answer is option '$$(D)$$'.
  • Question 5
    1 / -0
    If $$7th$$ and $$13th$$ terms of an $$A.P$$. Be $$34$$ and $$64$$, respectively, then its $$18th$$ terms is:
    Solution
    The general term of an $$AP$$ is given by $$a_n = a+(n-1)d$$, where $$ a $$ & $$ d $$ are the first and common difference of an $$AP$$ respectively.
    $${a}_{7}=34$$
    $${a}_{13}=64$$
    $$a+6d=34$$
    $$a+12d=64$$
    $$-6d=-30$$
    $$d=\cfrac{30}{6}=5$$
    $$\therefore a= 4.$$
    $${a}_{18}=a+17d=4+17(5)=89$$
  • Question 6
    1 / -0
    If two terms of an arithmetic progression are known, then the two terms can be represented using which of the formula below?
    Solution
    If two terms of an arithmetic progression are known, then the two terms can be represented using $$t_n = a + (n-1)d$$ as the values for tn will be known.
  • Question 7
    1 / -0
    The third term of  an arithmetic progression is $$18$$, and the seventh term is $$30$$, then the sum of $$17$$ terms is 
    Solution
    Let $$T_n$$ be the $$n^{th}$$ term of the AP.

    $$T_{n} = a+(n-1)d$$

    Where $$a$$ and $$d$$ are first term and common difference respectively.

    According to the given condition

    $$T_{3} = a+(3-1)d$$

    $$T_{3} = a+2d$$

    $$18 = a+2d$$........$$(1)$$

    $$T_{7} = a+(7-1)d$$

    $$T_{7} = a+6d$$

    $$30 = a+6d$$........$$(2)$$

    solving $$(1)$$ and $$(2)$$ we get,

    $$a = 12$$

    $$d = 3$$

    Sum of $$n$$ terms of an AP is given as,

    $$S_{n} = \dfrac {n}{2} [2a+(n-1)d]$$

    $$S_{17}= \dfrac {17}{2} [2(12)+(17-1)3]$$

    $$S_{17}=612$$

    Hence option (A) is correct option
  • Question 8
    1 / -0
    Sum of the first $$20$$ odd natural numbers is
    Solution
    An odd number is one that is not divisible by $$2$$ and the first odd natural number is $$1.$$ Since two consecutive odd numbers differ by two, the first $$20$$ odd natural numbers are

    $$1,3,5,7,9,11,13,15,17,19,21,23,25,27,29,31,33,35,37,39$$

    which is an A.P. with the first term $$a=1,$$ the common difference $$d=2 $$and total number of terms $$n = 20.$$ Applying the general formula for the sum of an A.P.

    $$S_{n}= \dfrac{n}{2} [{2a + (n–1)d}] $$

    $$\Rightarrow S_{20}= \dfrac{20}{2} [2(1)+(20-1)(2)]$$

    $$\Rightarrow S_{20}= 10(2+38) $$

    $$\Rightarrow S_{20}= 400$$
  • Question 9
    1 / -0
    The sum of first $$p$$ terms of an arithmetic progression is $$q$$, and the sum of first $$q$$ term is $$p$$, then the sum of first $$p + q$$ terms is
  • Question 10
    1 / -0
    The first term of an $$A.P.$$ is $$10$$ and its $$41^{st}$$ term is $$81$$. Find the sum of the series, if $$81$$ is the last term.
    Solution

    Given, first term, $$a=10$$

    last term, $$l=81$$

    total number of terms, $$n=41$$


    Sum, $$S_n=\dfrac{n}{2}[a+l]$$

                   $$=\dfrac{41}{2}[10+81]$$

                   $$=\dfrac{41}{2}\times91$$

                   $$=1865.5$$


    Hence, the sum of the series is $$1865.5$$

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Selfstudy
Selfstudy
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now