Self Studies

Coordinate Geometry Test - 18

Result Self Studies

Coordinate Geometry Test - 18
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The area of a triangle whose vertices are $$(a, c+a), (a, c) $$ and $$(-a, c-a) $$ are 
    Solution
    Area of a triangle with vertices $$({ x }_{ 1 },{ y }_{ 1 })$$ ; $$({ x }_{ 2 },{ y

    }_{ 2 })$$  and $$({ x }_{ 3 },{ y }_{ 3 })$$  is $$ \left| \frac { {

    x }_{ 1 }({ y }_{ 2 }-{ y }_{ 3 })+{ x }_{ 2 }({ y }_{ 3 }-{ y }_{ 1 })+{ x }_{

    3 }({ y }_{ 1 }-{ y }_{ 2 }) }{ 2 }  \right| $$
    Hence, area of the triangle with given vertices is $$ \left| \frac { { a }(c-c+a)+a(c-a-c-a)-a(c+a-c) }{ 2 }  \right|  = \left| \frac { { a }^{ 2 }-2{ a }^{ 2 }-{ a }^{ 2 } }{ 2 }  \right|  = { a }^{ 2 } $$


  • Question 2
    1 / -0
    If the area of the triangle formed by the points $$(-2,3), (4,-5)$$ and $$(-3,y)$$ is 10 square units then $$y =$$
    Solution
    Area of triangle having vertices $$(x_1,y_1), (x_2,y_2)$$ and $$(x_3,y_3)$$ is given by
     $$ = \dfrac{1}{2} \times [ x_1 (y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2) ] $$
    $$\displaystyle \text{Area} =\frac{1}{2}\left [ -2\left ( -5-y \right )+4\left ( y-3 \right )-3\left ( 3+5 \right ) \right ]$$
              $$\displaystyle =\frac{1}{2}\left ( 10+2y+4y-12-24 \right )$$
              $$\displaystyle =\frac{1}{2}\left ( 6y-26 \right )=3y-13$$
    $$\displaystyle 3y-13=10\ \mathrm{sq. unit}$$ 
    $$\displaystyle y=\frac{23}{3}$$
  • Question 3
    1 / -0
    The midpoint of the line segment with endpoints $$(-6,4)$$ and $$(8,2)$$ is
    Solution
    Midpoint = $$\displaystyle \left ( \frac{-6+8}2,{\frac{4+2}{2}} \right )=\left ( 1, 3 \right )$$
  • Question 4
    1 / -0
    If the area of the triangle formed by $$ (-2,5), (x,-3) $$ and $$(3,2)$$ is $$14 $$ square units, then $$x=$$ ____.
    Solution
    Area of triangle having vertices $$(x_1,y_1), (x_2,y_2)$$ and $$(x_3,y_3)$$ is given by
    $$ = \dfrac{1}{2} \times [ x_1 (y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2) ] $$
    $$\therefore \displaystyle Area=\frac{1}{2}\left [ -2\left ( -3-2 \right )+x\left ( 2-5 \right )+3\left ( 5+3 \right ) \right ]$$
    $$\displaystyle =\frac{1}{2}\left [ 10-3x+24 \right ]=\frac{34-3x}{2}$$
    $$\displaystyle \therefore \frac{34-3x}{2}=14$$ or x = 2
  • Question 5
    1 / -0
    A(4,0) and B(5,0) are two points If AB is produced to C such that AB=BC then the coordinates of C are
    Solution
    From the figure C = (6, 0)

  • Question 6
    1 / -0
    In the diagram M(2,3) is the midpoint of AB The coordinates of A and B are respectively

    Solution
    Let A be (x, 0) and B be (0, y) Then
    $$\displaystyle M=\left ( \frac{0+x}{2},\frac{y+0}{2} \right )=\left ( 2,3 \right )$$
    or x = 4, y = 6
  • Question 7
    1 / -0
    In the diagram, $$M$$ is the midpoint of $$PQ$$. Find the value of $$k$$.

    Solution
    Applying mid point formula for point $$P(-3,1)$$ and $$Q(5,k)$$ and equating the coordinates to point $$M$$ we get,

    $$\dfrac{5+(-3)}{2}=1$$

    $$\dfrac{k+1}{2}=2$$

    $$\therefore\Rightarrow k=3$$
  • Question 8
    1 / -0
    The midpoint of the line segment between P$$\displaystyle _{1}$$ (x, y) and P$$\displaystyle _{2}$$ (-2, 4) is P$$\displaystyle _{m}$$ (2, -1). Find the unknown coordinate.
    Solution
    Given,
    $$P_m(2,-1), P_1(x,y)$$ and $$P_2(-2,4)$$

    $$(2,-1)=\left(\dfrac{x+(-2)}{2}, \dfrac{y+4}{2}\right)$$   ..... By midpoint formula 

    $$\therefore 2=\dfrac{x+(-2)}{2}$$
    $$=>4=x+(-2)$$
    $$=>x=6$$

    And,
    $$-1=\dfrac{y+4}{2}$$
    $$=>-2=y+4$$
    $$=>y=-6$$

    $$\therefore (x,y)=(6,-6)$$
  • Question 9
    1 / -0
    In the following figure, what is the midpoint of $$\overline {UV}$$?

    Solution
    Given are the two points of the line $$VU$$
    Let point on $$V$$ be$$\left( { x }_{ 1 },y_{ 1 } \right) $$ $$=(1,8)$$
    Let point on $$U$$ be $$\left( { x }_{ 2 },{ y }_{ 2 } \right) $$ $$=(-3,-7)$$
    We know the midpoint formula is
    $$\left( { x }_{ m },{ y }_{ m } \right) =\left[ \dfrac { { x }_{ 1 }+{ x }_{ 2 } }{ 2 } ,\dfrac { { y }_{ 1 }+{ y }_{ 2 } }{ 2 }  \right] $$
    Putting the values of in the formula, we get
    $$\left( { x }_{ m },{ y }_{ m } \right) =\left[ \dfrac { 1+\left( -3 \right)  }{ 2 } ,\dfrac { 8+\left( -7 \right)  }{ 2 }  \right] $$
     $$\left( { x }_{ m },{ y }_{ m } \right) =\left[ \dfrac { -2 }{ 2 } ,\dfrac { 1 }{ 2 }  \right] $$
     $$\left( { x }_{ m },{ y }_{ m } \right) =\left[ -1,\dfrac { 1 }{ 2 }  \right] $$

  • Question 10
    1 / -0
    In the xy-plane, find the mid point of the line segment joining the points $$\left( 5,9 \right) $$ and $$\left( 7,11 \right) $$.
    Solution
    Given line segment point $$(5,9)$$ and $$(7,11)$$, then mid point as per section formula: 
    $$(x,y)=$$ $$\left ( \dfrac{7+5}{2} ,\dfrac{11+9}{2} \right )$$
    $$=$$ $$\left ( \dfrac{12}{2} ,\dfrac{20}{2}\right)$$
    $$=$$ $$ (6,10)$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now