Self Studies

Coordinate Geometry Test - 21

Result Self Studies

Coordinate Geometry Test - 21
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The mid point of $$(2,3)$$ and $$(8,9)$$ is 
    Solution
    The points are $$(x_1,y_1)=(2,3)$$ and $$(x_2,y_2)=(8,9)$$

    The mid point is given as $$\left(\dfrac{2+8}2,\dfrac {3+9}2\right)$$
                                    
    $$=\left(\dfrac {10}2,\dfrac {12}2\right)=(5,6)$$
  • Question 2
    1 / -0
    The mid point of $$(4,9)  $$ and $$(8,3)$$ is 
    Solution
    The mid point of $$(4,9)  $$ and $$(8,3)$$ is given as 
    $$\left(\dfrac{4+8}2,\dfrac{9+3}2\right)\\=\left(\dfrac {12}2,\dfrac{12}2\right)=(6,6)$$
  • Question 3
    1 / -0
    The mid point of $$(3,4)$$ and $$(1,-2)$$ is
    Solution
    The points are $$(3,4)$$ and $$(1,-2)$$

    The mid point of $$(3,4)$$ and $$(1,-2)$$ is given by 
    $$\left(\dfrac {x_1+x_2}2,\dfrac {y_1+y_2}2\right)\\\left(\dfrac{3+1}2,\dfrac {4-2}2\right)=(2,1)$$
  • Question 4
    1 / -0
    A(1,-1), B(0,4) and C (-5,3) are vertices of  $$\Delta ABC.\;The\;length\;of\;median\;$$$$\overline {AD} $$ is......
    Solution

  • Question 5
    1 / -0
    Select the correct alternative from the answer of the question given below. How many midpoints does a segment have?
    Solution
    Every segment has one and only one midpoint.
    Hence, the correct answer is only one.
  • Question 6
    1 / -0
    Find the area of triangle having vertices are $$A (3, 1), B (12, 2)$$ and $$C (0, 2)$$.
    Solution

    The  given  points  are  $$A\left( { x }_{ 1 },{ y }_{ 1 } \right) =\left( 3,1 \right) ,  B\left( { x }_{ 2 },{ y }_{ 2 } \right) =\left( 12,2 \right)   \&   C\left( { x }_{ 3 },{ y }_{ 3 } \right) =\left( 0,2 \right)$$

    Let  us  obtain  $$ar\Delta ABC$$  by  applying  the  area  formula.

    $$ ar\Delta =\dfrac { 1 }{ 2 } \left\{ { x }_{ 1 }\left( { y }_{ 2 }-{ y }_{ 3 } \right) +{ x }_{ 2 }\left( { y }_{ 3 }-{ y }_{ 1 } \right) +{ x }_{ 3 }\left( { y }_{ 1 }-{ y }_{ 2 } \right)  \right\}$$

    $$\Rightarrow ar\Delta =\dfrac { 1 }{ 2 } \left\{ 3\left( 2-2 \right) +12\left( 2-1 \right) +0\left( 1-2 \right)  \right\}$$ units $$=6$$ units

    $$\therefore   ar\Delta =6$$ units 

    Hence, option B.

  • Question 7
    1 / -0
    The distance of the point P (6, 8) from the origin is
    Solution
    $$ The\quad distance\quad p\quad of\quad a\quad point\quad P(x,y)\quad from\quad the\quad origine\quad is\\ p=\sqrt { { x }^{ 2 }+{ y }^{ 2 } } .\\ Here\quad P(x,y)=(6,8).\\ \therefore \quad p=\sqrt { { x }^{ 2 }+{ y }^{ 2 } } =\sqrt { 6^{ 2 }+8^{ 2 } } units=\sqrt { 100 } units=10\quad units.\\ Ans-\quad 10\quad units.\\  $$

  • Question 8
    1 / -0
    If $$P \left( \dfrac{a}{3}, 4\right)$$ is the mid-point of the line segment joining the points $$Q ( 6, 5) $$  and $$R( 2, 3)$$, then the value of $$a$$ is
    Solution
    $$P(\dfrac{a}{3} .4)$$ is the mid - point of the line segment joining $$Q (6,5) $$and $$R (2,3)$$.
    Using section formula,
    co-ordinates of $$P =\left(\dfrac{6+2}{2} , \dfrac{5+3}{2}\right)$$

    co-ordinates of $$P =\left(\dfrac{8}{2} ,\dfrac{8}{2}\right)$$

    co-ordinates of $$P =\left(4,4\right)$$
    $$\dfrac{a}{3}=4$$
    $$\Rightarrow a=12$$
  • Question 9
    1 / -0
    The point which lies on the perpendicular bisector of the line segment joining the points $$A (2, 5)$$ and $$B (-2,- 5) $$ is:
    Solution

    Let the mid point is $$(x_1 , y_1)$$
    $$x_1 =\dfrac{2+(-2)}{2}=\dfrac{0}{2} =0$$
    $$y_1=\dfrac{5+(-5)}{0}=\dfrac{0}{2}=0$$
    $$(0,0)$$ lies on the perpendicular bisector of $$(2,5)$$ and $$(-2,-5)$$.

  • Question 10
    1 / -0
    The area of a triangle with vertices $$(a, b + c), (b, c + a)$$ and $$(c, a + b)$$ is
    Solution
    The area of $$\triangle ABC$$ with vertices $$A\equiv(x_1, y_1)$$, $$B\equiv(x_2, y_2)$$ and $$C\equiv(x_3, y_3)$$ is given as,
    $$A(\triangle ABC) = \left|\dfrac12[x_1(y_3-y_2) +x_2(y_1 - y_3) + x_3(y_2-y_1) ]\right|$$
    In this problem,
    $$A(\triangle ABC) = \left|\dfrac12[a(a+b-(c+a)) +b(b+c - (a+b)) + c(c+a-(b+c)) ]\right|$$
    $$\therefore A(\triangle ABC) = \left|\dfrac12[ab-ac + bc-ba + ca-cb]\right|$$
    $$\therefore A(\triangle ABC) = 0$$
    Hence, the correct Option is D.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now