Given that the vertices of the $$\Delta ABC$$ are $$A\left( { x }_{ 1 },{ y }_{ 1 } \right) =\left( 2,9 \right) , B\left( { x }_{ 2 },{ y }_{ 2 } \right) =\left( a,5 \right) $$ and $$C\left( { x }_{ 3 },{ y }_{ 3 } \right) =\left( 5,5 \right) and \angle B={ 90 }^{ o }$$.
So, $$AC$$ is the hypotenuse.
$$ \therefore$$ by Pythagoras theorem, we have
$$ { AB }^{ 2 }+{ BC }^{ 2 }={ AC }^{ 2 }$$ .........(i)
Now, by distance formula
$$d=\sqrt { { \left( { x }_{ 1 }-{ x }_{ 2 } \right) }^{ 2 }+{ \left( { y }_{ 1 }-y_{ 2 } \right) }^{ 2 } } $$
So, $$AB=\sqrt { { \left( { x }_{ 1 }-{ x }_{ 2 } \right) }^{ 2 }+{ \left( { y }_{ 1 }-y_{ 2 } \right) }^{ 2 } } =\sqrt { { \left( 2-a \right) }^{ 2 }+{ \left( 9-5 \right) }^{ 2 } } =\sqrt { { a }^{ 2 }-4a+20 } $$,
$$BC=\sqrt { { \left( { x }_{ 3 }-{ x }_{ 2 } \right) }^{ 2 }+{ \left( { y }_{ 3 }-y_{ 2 } \right) }^{ 2 } } =\sqrt { { \left( 5-a \right) }^{ 2 }+{ \left( 5-5 \right) }^{ 2 } } =\sqrt { { a }^{ 2 }-10a+25 } $$ and
$$AC=\sqrt { { \left( { x }_{ 3 }-{ x }_{ 1 } \right) }^{ 2 }+{ \left( { y }_{ 3 }-y_{ 1 } \right) }^{ 2 } } =\sqrt { { \left( 5-2 \right) }^{ 2 }+{ \left( 5-9 \right) }^{ 2 } } $$ units $$=\sqrt { 25 } $$ units.
$$ \therefore$$ by (i), we get
$${ a }^{ 2 }-4a+20{ +a }^{ 2 }-10a+25=25$$
$$ \Rightarrow { a }^{ 2 }-7a+10=0$$
$$ \Rightarrow a=5,2$$
We reject $$a=5$$, since $$B$$ and $$C$$ will coincide in that case and $$\Delta ABC$$ will collapse.
So, $$a=2. i.e. AB=\sqrt { { a }^{ 2 }-4a+20 } =\sqrt { 4-8+20 } 3$$ units $$=43$$ units
$$ BC=\sqrt { { a }^{ 2 }-10a+25 } =\sqrt { 4-20+25 } 3$$ units $$=3$$ units.
Now,
We know that the area of the triangle whose vertices are $$\displaystyle (x_{1},y_{1}),(x_{2},y_{2}),$$ and $$(x_{3},y_{3})$$ is $$\cfrac{1}{2}\left | x_{1}(y_{2}-y_{3})+x_{2}(y_{3}-y_{1}) +x_{3}(y_{1}-y_{2})\right |$$
Therefore, required area is $$6$$ square units.