Self Studies

Coordinate Geometry Test - 22

Result Self Studies

Coordinate Geometry Test - 22
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    A line intersects the $$y$$-axis and $$x$$-axis at the points $$P$$ and $$Q$$ respectively. If $$(2, 5)$$ is the mid-point of $$PQ$$, then the coordinates of $$P$$ and $$Q$$ are respectively
    Solution
    $$ Given\quad that\quad the\quad point\quad \quad R\left( p,q \right) =\left( 2,5 \right) \quad is\quad the\quad mid\quad point\quad of\quad the\quad line\quad segment\\ PQ\quad joining\quad the\quad points\quad P=\left( { x }_{ 1 },{ y }_{ 1 } \right) =\left( 0,y \right) \quad and\quad Q=\left( { x }_{ 2 },{ y }_{ 2 } \right) =\left( x,0 \right) .\\ \therefore \quad by\quad mid-point\quad formula\quad we\quad have\\ p=\frac { { x }_{ 1 }+{ x }_{ 2 } }{ 2 } \quad and\quad q=\frac { y_{ 1 }+y_{ 2 } }{ 2 } \quad .\\ \Longrightarrow p=\frac { 0+x }{ 2 } =\frac { x }{ 2 } \quad and\quad q=\frac { y+0 }{ 2 } =\frac { y }{ 2 } \\ \Longrightarrow \frac { x }{ 2 } =2\quad i.e\quad x=4\quad and\quad \frac { y }{ 2 } =5\quad i.e\quad y=10\\ \therefore \quad The\quad coordinates\quad of\quad P\quad is\quad \left( 0,y \right) =\left( 0,10 \right) \quad and\\ the\quad coordinates\quad of\quad Q\quad is\quad \left( x,0 \right) =\left( 4,0 \right) \\ Ans-\quad Option\quad D\\  $$
  • Question 2
    1 / -0
    Plot $$(3, 0), (5, 0)$$ and $$(0, 4) $$ on cartesian plane. Name the figure formed by joining these points and find its area.
    Solution
    The figure is a triangle.
    We know that the area of the triangle whose vertices are $$\displaystyle (x_{1},y_{1}),(x_{2},y_{2}),$$ and $$(x_{3},y_{3})$$ is $$\cfrac{1}{2}\left | x_{1}(y_{2}-y_{3})+x_{2}(y_{3}-y_{1}) +x_{3}(y_{1}-y_{2})\right |$$
    Therefore, 
    Area $$= \dfrac{1}{2} [3(0-4)+5(4-0)+0] = 4$$ square units.

  • Question 3
    1 / -0
    The point, which divides the line segment joining the points $$(7, 6)$$ and $$(3, 4)$$ in ratio $$1 : 2$$ internally, lies in the
    Solution
    As we know if a point $$P(x,y)$$ divides the line segment $$AB$$ joining the points $$A\left( { x }_{ 1 },{ y }_{ 1 } \right)  \&  B\left( { x }_{ 2 },{ y }_{ 2 } \right)$$  in the ratio $$m:n$$ then, by the section formula, 
    $$\\ x=\dfrac { n{ x }_{ 1 }+m{ x }_{ 2 } }{ m+n }  \&  y=\dfrac { n{ y }_{ 1 }+m{ y }_{ 2 } }{ m+n } .\\$$
    Let the points given be $$A = (7,6)$$ and $$B = (3,4)$$. Let the point which divides it internally in the ratio $$1:2$$ be $$P$$
    $$P=\left(\dfrac{7\times2 + 3\times1}{2+1}, \dfrac{6\times2 + 4\times 1}{2+1} \right)$$
    $$P=\left(\dfrac{17}3, \dfrac{16}3\right)$$
    This point lies in the first quadrant. Hence, the correct answer is Option A.
  • Question 4
    1 / -0
    The area of a triangle with vertices $$A (3, 0), B (7, 0)$$ and $$C (8, 4)$$ is
    Solution
    The area of the  $$ \Delta ABC$$ with vertices 
    $$ A\left( { x }_{ 1 },{ y }_{ 1 } \right)=(3,0), B\left( { x }_{ 2 },{ y }_{ 2 } \right)=(7,0)\ \&\ C\left( { x }_{ 3 },{ y }_{ 3 } \right)=(8,4)$$ is 
    $$ Ar.\Delta ABC=\dfrac { 1 }{ 2 } \left[ { x }_{ 1 }\left( { y }_{ 2 }-{ y }_{ 3 } \right) +{ x }_{ 2 }\left( { y }_{ 3 }-{ y }_{ 1 } \right) +{ x }_{ 3 }\left( { y }_{ 1 }-{ y }_{ 2 } \right)  \right]$$
    $$=\dfrac { 1 }{ 2 } \left\{ 3\left( 0-4 \right) +7\left( 4-0 \right) +8\left( 0-0 \right)  \right\}$$ sq.units $$=8$$ sq. units.
    Hence, option C.
  • Question 5
    1 / -0
    The points $$A (2, 9), B (a, 5)$$ and $$C (5, 5) $$ are the vertices of a triangle $$ABC$$ right angled at $$B$$. Find the values of  $$a$$ and hence the area of $$\Delta $$ $$ABC$$.
    Solution
    Given that the vertices of the $$\Delta ABC$$ are $$A\left( { x }_{ 1 },{ y }_{ 1 } \right) =\left( 2,9 \right) , B\left( { x }_{ 2 },{ y }_{ 2 } \right) =\left( a,5 \right) $$ and $$C\left( { x }_{ 3 },{ y }_{ 3 } \right) =\left( 5,5 \right) and \angle B={ 90 }^{ o }$$. 
    So, $$AC$$ is the hypotenuse.
    $$ \therefore$$ by Pythagoras theorem, we have 
    $$ { AB }^{ 2 }+{ BC }^{ 2 }={ AC }^{ 2 }$$    .........(i)
    Now, by distance formula 
    $$d=\sqrt { { \left( { x }_{ 1 }-{ x }_{ 2 } \right)  }^{ 2 }+{ \left( { y }_{ 1 }-y_{ 2 } \right)  }^{ 2 } } $$ 
    So, $$AB=\sqrt { { \left( { x }_{ 1 }-{ x }_{ 2 } \right)  }^{ 2 }+{ \left( { y }_{ 1 }-y_{ 2 } \right)  }^{ 2 } } =\sqrt { { \left( 2-a \right)  }^{ 2 }+{ \left( 9-5 \right)  }^{ 2 } } =\sqrt { { a }^{ 2 }-4a+20 } $$, 
    $$BC=\sqrt { { \left( { x }_{ 3 }-{ x }_{ 2 } \right)  }^{ 2 }+{ \left( { y }_{ 3 }-y_{ 2 } \right)  }^{ 2 } } =\sqrt { { \left( 5-a \right)  }^{ 2 }+{ \left( 5-5 \right)  }^{ 2 } } =\sqrt { { a }^{ 2 }-10a+25 } $$ and 
    $$AC=\sqrt { { \left( { x }_{ 3 }-{ x }_{ 1 } \right)  }^{ 2 }+{ \left( { y }_{ 3 }-y_{ 1 } \right)  }^{ 2 } } =\sqrt { { \left( 5-2 \right)  }^{ 2 }+{ \left( 5-9 \right)  }^{ 2 } } $$ units $$=\sqrt { 25 } $$ units.
    $$ \therefore$$ by (i), we get
    $${ a }^{ 2 }-4a+20{ +a }^{ 2 }-10a+25=25$$
    $$ \Rightarrow { a }^{ 2 }-7a+10=0$$
    $$ \Rightarrow a=5,2$$ 
    We reject $$a=5$$, since $$B$$ and $$C$$ will coincide in that case and $$\Delta ABC$$ will collapse. 
    So, $$a=2. i.e. AB=\sqrt { { a }^{ 2 }-4a+20 } =\sqrt { 4-8+20 } 3$$ units $$=43$$ units
    $$ BC=\sqrt { { a }^{ 2 }-10a+25 } =\sqrt { 4-20+25 } 3$$ units $$=3$$ units.
    Now,
    We know that the area of the triangle whose vertices are $$\displaystyle (x_{1},y_{1}),(x_{2},y_{2}),$$ and $$(x_{3},y_{3})$$ is $$\cfrac{1}{2}\left | x_{1}(y_{2}-y_{3})+x_{2}(y_{3}-y_{1}) +x_{3}(y_{1}-y_{2})\right |$$
    Therefore, required area is $$6$$ square units.
  • Question 6
    1 / -0
    If $$P$$ $$(9a-  2, b)$$ divides line segment joining $$A$$ $$(3a + 1, -3)$$ and $$B$$ $$(8a, 5)$$ in the ratio $$3:1$$, find the values of $$a$$ and $$b.$$
    Solution
    Note:
    If a point $$P(x,y)$$ divides the line segment $$AB$$ joining the points $$A\left( { x }_{ 1 },{ y }_{ 1 } \right)  \&  B\left( { x }_{ 2 },{ y }_{ 2 } \right)$$  in the ratio $$m:n$$ then, by the section formula, 
    $$\\ x=\dfrac { n{ x }_{ 1 }+m{ x }_{ 2 } }{ m+n }  \&  y=\dfrac { n{ y }_{ 1 }+m{ y }_{ 2 } }{ m+n } .\\$$
    Let the point $$P(x,y)=\left( 9a-2, b \right)$$  divide the line segment $$AB $$ joining the points $$A\left( { x }_{ 1 },{ y }_{ 1 } \right) =\left( 3a+1, -3 \right)  \&  B\left( { x }_{ 2 },{ y }_{ 2 } \right) =\left( 8a,5 \right)$$  in the ratio $$m:n=3:1.$$
    Then, by the section formula, $$x=\dfrac { n{ x }_{ 2 }+m{ x }_{ 1 } }{ m+n }$$
    $$\Rightarrow 9a-2=\dfrac { 3\times 8a+1\times \left( 3a+1 \right)  }{ 3+1 }$$ 
    $$\Rightarrow a=1$$
    Again, $$y=\dfrac { n{ y }_{ 1 }+m{ y }_{ 2 } }{ m+n} $$
    $$\Rightarrow b=\dfrac { 3\times 5+1\times (-3) }{ 3+1 } =3$$
    So, $$a=1 $$ and $$  b=3$$
  • Question 7
    1 / -0
    Find the coordinates of the point $$R$$ on the line segment joining the points $$P (1, 3)$$ and $$Q (2, 5)$$ such that $$PR =\dfrac{3}{5}PQ$$.
    Solution

    Given that the point $$R\left( x,y \right)$$ divides the line segment $$PQ$$ joining the points $$P\left( { x }_{ 1 },{ y }_{ 1 } \right) =\left( 1,3 \right) \ \&\ Q\left( { x }_{ 2 },{ y }_{ 2 } \right) =\left( 2,5 \right)$$ in a ratio such that $$\dfrac { PR }{ PQ } =\dfrac { 3 }{ 5 }$$ i.e $$PR<PQ$$.

    $$\Rightarrow R$$ divides $$PQ$$ internally. 

    Here $$\dfrac { PR }{ PQ } =\dfrac { 3 }{ 5 }$$ 

    $$\Rightarrow \dfrac { PQ }{ PR } =\dfrac { 5 }{ 3 }$$

    $$\Rightarrow \dfrac { PR+RQ }{ PR } =\dfrac { 5 }{ 3 }$$

    $$\Rightarrow \dfrac { RQ }{ PR } =\dfrac { 2 }{ 3 }$$

    $$\Rightarrow \dfrac { PR }{ QR } =\dfrac { 3 }{2 }$$

    $$ \therefore m:n=3:2$$

    $$\therefore$$ By the section formula, we have

    $$x=\dfrac { n{ x }_{ 1 }+m{ x }_{ 2 } }{ m+n } \&\ y=\dfrac { n{ y }_{ 1 }+m{ y }_{ 2 } }{ m+n }$$

    i.e $$x=\dfrac { 2\times 1+3\times 2 }{ 2+3 } =\dfrac { 8 }{ 5 }$$

    and $$y=\dfrac { 2\times 3+3\times 5 }{ 2+3 } =\dfrac { 21 }{ 5 }$$

    Therefore, $$x= \dfrac { 8 }{ 5 }; y=\dfrac { 21 }{ 5 }  $$

    Hence, option A is the correct answer.

  • Question 8
    1 / -0

    Directions For Questions

    The points $$A$$ $$(x_1, y_1), B (x_2, y_2)$$ and $$C (x_3, y_3)$$ are the vertices of $$\Delta $$ ABC.
    The median $$AD$$ meets $$BC$$ at $$D$$.

    ...view full instructions

    The median from A meets BC at D. Find the coordinates of the point D.

    Solution
    $$ The\quad points\quad A(x_{ 1 },y_{ 1 }),\quad B(x_{ 2 },y_{ 2 })\quad and\quad C(x_{ 3 }y_{ 3 })\quad are\quad the\quad vertices\quad of\quad \Delta ABC.\\ \therefore \quad The\quad median\quad AD\quad from\quad A\quad will\quad meet\quad BC\quad at\quad D\quad which\quad is\quad the\quad \\ mid\quad point\quad of\quad BC.\\ So,\quad by\quad section\quad formula\quad for\quad mid\quad point,\quad the\quad co-ordinates\quad of\quad D\quad is\\ D\left( \frac { x_{ 2 }+x_{ 3 } }{ 2 } ,\frac { y_{ 2 }+y_{ 3 } }{ 2 }  \right) .\\ Ans-\quad D\left( \frac { x_{ 2 }+x_{ 3 } }{ 2 } ,\frac { y_{ 2 }+y_{ 3 } }{ 2 }  \right) . $$

  • Question 9
    1 / -0
    Find the area of triangle having vertices $$A (6, 10), B (4, 5)$$ and $$C (3, 8)$$ .
    Solution
    The point are $$ A\left( { x }_{ 1 },{ y }_{ 1 } \right) =\left( 6,10 \right) , B\left( { x }_{ 2 },{ y }_{ 2 } \right) =\left( 4,5 \right) $$ and $$ C\left( { x }_{ 3 },{ y }_{ 3 } \right) =\left( 3,8 \right) $$. 
    $$ ar\Delta ABC=\dfrac { 1 }{ 2 } \left\{ { x }_{ 1 }\left( { y }_{ 2 }-{ y }_{ 3 } \right) +{ x }_{ 2 }\left( { y }_{ 3 }-{ y }_{ 1 } \right) +{ x }_{ 3 }\left( { y }_{ 1 }-{ y }_{ 2 } \right)  \right\} $$
    $$ \Rightarrow ar\Delta ABC=\dfrac { 1 }{ 2 } \left\{ 6\left( 5-8 \right) +4\left( 8-10 \right) +3\left( 10-5 \right)  \right\} $$ sq. units
    $$ \Rightarrow ar\Delta ABC=5.5$$ sq. units
  • Question 10
    1 / -0
    If $$x-$$axis divide the line segment joining the points $$( 4, 6)$$ and $$(1,-7)$$ in ratio $$m:n$$, then the coordinates of the point of division is
    Solution
    Let a point $$P(x,y)$$ divide the line segment $$AB$$ joining the points $$A\left( { x }_{ 1 },{ y }_{ 1 } \right)\ \&\ B\left( { x }_{ 2 },{ y }_{ 2 } \right)$$ in the ratio $$m:n$$.
    Here the point is on the $$x-$$axis.
    So, $$P(x,y)=(x,0)$$
    Then, by section formula we have
    $$x=\dfrac { n{ x }_{ 1 }+m{ x }_{ 2 } }{ m+n }\ \&\ y=\dfrac { n{ y }_{ 1 }+m{ y }_{ 2 } }{ m+n }$$
    Now, $$A\left( { x }_{ 1 },{ y }_{ 1 } \right) =\left( 4,6 \right)\ \&\ B\left( { x }_{ 2 },{ y }_{ 2 } \right) =\left( 1-7 \right)$$
    Therefore, $$  y=\dfrac { n{ y }_{ 1 }+m{ y }_{ 2 } }{ m+n } \Rightarrow 0=\dfrac { -7m+6n }{ m+n }$$
    $$\Rightarrow \dfrac { m }{ n } =\dfrac { 6 }{ 7 } $$ i.e. $$ m:n=6:7$$
    $$ \Rightarrow x=\dfrac { n{ x }_{ 2 }+m{ x }_{ 1 } }{ m+n} $$
    $$\Rightarrow \ x=\dfrac { 7\times 1+6\times 4 }{ 6+7 } =\dfrac { 31 }{ 13 }$$
    $$\Rightarrow  P\left( x,0 \right) =P\left( \dfrac { 31 }{ 13 } ,0 \right)$$
    Hence, option B is correct.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now